PHASE 2 ENVIRONMENTAL SITE ASSESSMENT JARD COMPANY PROPERTY BENNINGTON, VERMONT Prepared For LAURENCE LEVY, INC. TRUSTEE 700 Centre, Suite 901 700-704 East Franklin Street February 1991 Richmond, Virginia Wehran Engineering Corporation Burlington, Vermont Environmental Engineers • Scientists • Constructors HRS Reference #36 Page 1 of 149 Laurence H. Levy, Inc. 700 Centre, Suite 901 700-704 E. Franklin Street Richmond, VA 23219 > Phone (804) 644-2000 Fax (804) 643-3423 March 8, 1991 Agency of Natural Resources State of Vermont 103 South MainS treet Waterbury, Vermont 05676 Attn: Ms. Diane Conrad, Chief Hazardous Sites Management Section RE: Jard Company, Inc. Dear Ms. Conrad: We are enclosing 'Phase 2 Environmental Site Assessment' for the Jard Company property in Bennington, Vermont (Copy Number 5). We would like an opportunity to discuss the report and the cleanup requirements with your office at your earliest possible convenience. Laurence H. Levy, Trustee Jard Company, Inc. LHL/kje Enclosure cc: John Malter, Wehran Engineering Corporation Antoinette Rogers, Esquire Chalres Taylor, Esquire Matthew Jacobs, Esquire February 21, 1991 Wehran Engineering Corporation Chace Mill 3-20 1 Mill Street Burlington, Vermont 05401 Tel: 802-658-6884 Fax: 802-658-5014 Laurence H. Levy, Trustee 700 East Franklin Street Suite 901 Richmond, VA 23219 Re: Phase 2 Environmental Site Assessment Jard Company Property, Bennington, Vermont WE Project No. 00272.01 Dear Mr. Levy: Wehran Engineering is pleased to provide you the enclosed Phase 2 Environmental Site Assessment. The environmental assessment provides the findings from the investigation conducted at the Jard Company located in Bennington, Vermont. If you have any questions, please call our office. Sincerely, WEHRAN ENGINEERING CORPORATION ndrea & Clack John A. Malter AEA/wlg HRS Reference #36 # PHASE 2 ENVIRONMENTAL SITE ASSESSMENT JARD COMPANY PROPERTY BENNINGTON, VERMONT Prepared For LAURENCE LEVY, INC. TRUSTEE 700 Centre, Suite 901 700-704 East Franklin Street Richmond, Virginia February 1991 Wehran Engineering Corporation Burlington, Vermont Environmental Engineers • Scientists • Constructors HRS Reference #36 Page 4 of 149 ### **TABLE OF CONTENTS** | | | | Page
<u>Number</u> | |-----|-------|----------------------------------|-----------------------| | 1.0 | INTRO | ODUCTION | . 1-1 | | | 1.1 | PREVIOUS WORK | . 1-1 | | | 1.2 | OBJECTIVES | . 1-2 | | 2.0 | GEOF | PHYSICAL SURVEY | . 2-1 | | 3.0 | SOIL | SAMPLING | . 3-1 | | | 3.1 | OFFSITE SURFICIAL SOILS | . 3-1 | | | 3.2 | ONSITE SOIL SAMPLING (Test Pits) | . 3-1 | | 4.0 | GROU | JNDWATER SAMPLING | . 4-1 | | | 4.1 | WATER LEVEL MEASUREMENTS | . 4-2 | | 5.0 | RESU | ILTS AND CONCLUSIONS | . 5-1 | | 6.0 | RECO | MMENDATIONS | . 6-1 | HRS Reference #36 Page 5 of 149 ### LIST OF TABLES | 5-1 Test Pit Soils - Chemical Data Summary 5-1 5-2 Test Pit Water Samples - Chemical Data Summary 5-1 5-3 Groundwater Chemical Data Summary 5-1 5-4 Groundwater (Oil Phase) Chemical Data Summary 5-1 LIST OF FIGURES Figure Follows Page No. 1-1 Site Location Map 1-1 2-1 Geophysical Traverse Lines 2-1 3-1 Soil and Groundwater Sampling Locations 3-1 APPENDICES Appendix A - Test Pit Logs Appendix B - Monitoring Well Construction Diagrams Appendix C - Test Pit Soil Chemical Data Appendix D - Test Pit Water Quality Data Appendix E - Groundwater Chemical Data | No. | | | Follows
Page No. | |---|-------|----------------|---------------------------------------|---------------------| | 5-3 Groundwater Chemical Data Summary | 5-1 | Test Pit Soils | - Chemical Data Summary | 5-1 | | Figure No. 1-1 Site Location Map 1-1 2-1 Geophysical Traverse Lines 2-1 3-1 Soil and Groundwater Sampling Locations 3-1 APPENDICES Appendix A — Test Pit Logs Appendix B — Monitoring Well Construction Diagrams Appendix C — Test Pit Water Quality Data Appendix D — Test Pit Water Quality Data | 5-2 | Test Pit Wate | er Samples - Chemical Data Summary | 5-1 | | LIST OF FIGURES Figure Follows Page No. 1-1 Site Location Map | 5-3 | Groundwater | Chemical Data Summary | 5-1 | | Figure No. 1-1 Site Location Map 1-1 2-1 Geophysical Traverse Lines 2-1 3-1 Soil and Groundwater Sampling Locations 3-1 APPENDICES Appendix A — Test Pit Logs Appendix B — Monitoring Well Construction Diagrams Appendix C — Test Pit Soil Chemical Data Appendix D — Test Pit Water Quality Data | 5-4 | Groundwater | (Oil Phase) Chemical Data Summary | 5-1 | | Figure No. 1-1 Site Location Map 1-1 Geophysical Traverse Lines 2-1 3-1 Soil and Groundwater Sampling Locations 3-1 APPENDICES Appendix A — Test Pit Logs Appendix B — Monitoring Well Construction Diagrams Appendix C — Test Pit Soil Chemical Data Appendix D — Test Pit Water Quality Data | | | | | | Figure No. 1-1 Site Location Map 1-1 Geophysical Traverse Lines 2-1 3-1 Soil and Groundwater Sampling Locations 3-1 APPENDICES Appendix A — Test Pit Logs Appendix B — Monitoring Well Construction Diagrams Appendix C — Test Pit Soil Chemical Data Appendix D — Test Pit Water Quality Data | | | | | | No. 1-1 Site Location Map | | | LIST OF FIGURES | | | 2-1 Geophysical Traverse Lines | _ | | | | | 3-1 Soil and Groundwater Sampling Locations | 1-1 | Site Location | Map | 1-1 | | APPENDICES Appendix A - Test Pit Logs Appendix B - Monitoring Well Construction Diagrams Appendix C - Test Pit Soil Chemical Data Appendix D - Test Pit Water Quality Data | 2-1 | Geophysical | Traverse Lines | 2-1 | | Appendix A - Test Pit Logs Appendix B - Monitoring Well Construction Diagrams Appendix C - Test Pit Soil Chemical Data Appendix D - Test Pit Water Quality Data | 3-1 | Soil and Gro | undwater Sampling Locations | 3-1 | | Appendix A - Test Pit Logs Appendix B - Monitoring Well Construction Diagrams Appendix C - Test Pit Soil Chemical Data Appendix D - Test Pit Water Quality Data | | | | | | Appendix A - Test Pit Logs Appendix B - Monitoring Well Construction Diagrams Appendix C - Test Pit Soil Chemical Data Appendix D - Test Pit Water Quality Data | | | | | | Appendix B - Monitoring Well Construction Diagrams Appendix C - Test Pit Soil Chemical Data Appendix D - Test Pit Water Quality Data | APPE | NDICES | | | | Appendix C - Test Pit Soil Chemical Data Appendix D - Test Pit Water Quality Data | Apper | ndix A - | Test Pit Logs | | | Appendix D - Test Pit Water Quality Data | Apper | ndix B - | Monitoring Well Construction Diagrams | | | | Apper | ndix C - | Test Pit Soil Chemical Data | | | Appendix E - Groundwater Chemical Data | Apper | ndix D - | Test Pit Water Quality Data | | | | Apper | ndix E - | Groundwater Chemical Data | | HRS Reference #36 Page 6 of 149 #### 1.0 INTRODUCTION Wehran Engineering has completed a Phase 2 environmental site assessment for a 12 acre parcel belonging to the Jard Company, Inc., on Bowen Road in Bennington, Vermont. Phase 2 work included a ground-penetrating radar survey of the site, offsite surficial soil sampling, onsite excavation of test pits and installation of groundwater monitoring wells, and evaluation of the results of these tasks. #### 1.1 PREVIOUS WORK The Jard Company is located on Bowen Road in Bennington, Vermont (Figure 1-1). The company owns 34 acres of property, including the 12 acres (containing the facility) which are the focus of this assessment. Jard was established in 1969 as a manufacturer of small capacitors, small non-fluid transformers, and small motors. Up to 250 employees (in three shifts) have been involved in plant operations. The plant ceased operations in early 1989. In order to investigate the potential extent of contamination, Wehran was requested to conduct a Phase 1 environmental investigation in the fall of 1989. That assessment included an initial site visit, review of applicable State and local files, a site walkover, soil and water sampling and analyses, interviews with available plant personnel, and evaluation of the results. The assessment was discussed in "Draft Environmental Site Assessment for the Jard Company Property in Bennington, Vermont," prepared by Wehran in November 1989. The principal contaminants detected in onsite soils included Acochlor-1242, Bis (2-ethylhexyl) phthalate, zinc, trichloroethane, and trichloroethene. Because contamination was detected on site, a Phase 2 assessment was recommended. 1-1 HRS Reference #36 Page 8 of 149 #### 1.2 OBJECTIVES The objectives of the Phase 2 site assessment were to: - determine the vertical extent of contamination at known areas of surficial soil contamination; - better define the horizontal extent of soil contamination; and - provide initial data on the extent, if any, of groundwater contamination. This task will include defining the direction of groundwater flow from the site. In order to meet these objectives, a scope of work was developed by Wehran and reviewed by the Vermont Department of Environmental Conservation (DEC). The tasks proposed in this scope were designed to provide data related to each of the stated objectives of the Phase 2 assessment. Specifically, the following tasks were proposed: - Geophysical survey. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were proposed to help map shallow subsurface features, including buried pipes and other man-made objects, as part of an overall assessment of potential migration pathways on site. Because of the occurrence of numerous overhead and buried cables and wires and buried pipes, all of which interfere with an
EMI signal, the EMI survey was not conducted. Discussion of the GPR survey is presented in Chapter 2.0 of this report. - Offsite surficial soil sampling. The objective of this task was to provide data to test the assumption that surficial soils contamination is limited to the site itself. Surficial soils on adjacent open land to the south and west of the facility were collected and sampled. Chapter 3.1 discusses this task. 1-2 31.02/21/91.00272.01 Page 9 of 149 - Onsite soils. To estimate the extent and depth of contamination, six test pits were excavated. Locations were chosen to be either near known or suspected areas of surficial contamination. Where the water table was encountered, water samples were also collected. Chapter 3.2 discusses this task. - Groundwater. Five monitor wells were installed to obtain groundwater samples for chemical analysis and to obtain water levels for estimating the direction of groundwater flow. This task is discussed in Chapter 4.0 of this report. 1-3 31.02/21/91.00272.01 HRS Reference #36 Page 10 of 149 #### 2.0 GEOPHYSICAL SURVEY The purpose of the geophysical survey was to map shallow subsurface features, including buried pipes and other man-made objects, as part of an overall assessment of potential migration pathways on site. The data were collected using a Geophysical Survey Systems Model SIR-8 ground-penetrating radar (GPR) unit coupled to a 50 megahertz antenna. The system operates by systematically emitting a very high frequency pulse of electromagnetic energy into the subsurface from a transceiving antenna, recording backscattered energy from the subsurface between pulse emissions. Backscattering occurs as the downward going pulse encounters contrasts in dielectric constants in the subsurface. Such contrasts are common at soil/soil, soil/rock, and soil/manmade object boundaries. The system is most effective in dry, low conductivity environments (such as dry sand), but effective depth of investigation can be severely inhibited by high conductivity conditions (salty or brackish water, clays). Geologic materials in the site area are primarily thin, coarse-grained stratified glacial drift and stream gravels (A.L. Hodges, Jr., 1966, Groundwater Favorability Map of the Batten Kill, Walloomsac River, and Hoosic River Basins). The GPR was expected to perform effectively on the basis of this information, and very good effective depth of investigation was obtained during the survey. The GPR traverses ran on site are shown on Figure 2 1. Areas identified in the Phase 1 investigation as possible underground conduits related to the concrete structures (dry wells) were examined with a gridwork of parallel GPR traverses. The peripheral areas were examined with a single continuous reconnaissance traverse to identify any subsurface targets not expected from examination of available site plans. In Area 2 (see Figure 2-1), several discrete subsurface targets were noted during the GPR survey. Data from this area indicate a linear feature (less than one foot deep) that may represent either a pipe or electrical conduit near the center of 2-1 31.02/21/91.00272.01 Page 11 of 149 HRS Reference #36 Page 12 of 149 the area. A shallow zone (0 - 4 feet deep) of attenuated signal returns is also evident toward the southerly part of the area in the vicinity of the Drum Storage Area. Area 3 (designation refers to sampling identification from the Phase 1 report) includes a dry well and two standpipes. The standpipes are suspected to be attached to a buried tank based on information presented in the Phase 1 report. This area was examined by a series of parallel GPR traverses at about five foot separation in both north-south and west-east directions. Locations along each traverse were identified by markers introduced onto the recordings at ten-foot intervals as the recordings were made. Several discrete subsurface targets were noted during the GPR survey in Area 3. The character of the signals suggested that pipes or other small diameter metallic objects are present in the subsurface: - A 12-inch pipe entering the dry well from the direction of the building at two to three foot depth does not appear on the GPR recordings. A large metallic target of this nature should clearly show on the GPR recordings. Because the pipe did not appear on the GPR recordings, it is possibly not steel. Clay or concrete pipes in soil sometimes do not present sufficient dielectric contrast to result in significant backscattering of the electromagnetic signals. - Between the building and the dry well, the GPR signal was attenuated between a depth of 10 and 15 feet. This signal change could theoretically be the result of either concentrations of organic compounds or of significant excavation in the area. - West of the dry well, backscattering of the GPR signal from a two-foot deep soil horizon is interrupted and the signal strength is strongly attenuated. This effect is assumed related to a mechanically disturbed soil (excavated and replaced, or mixed). 2-2 • The GPR recordings near the stand pipes did not clearly indicate a buried tank. Based on information in the Phase 1 report, however, it is believed that a small storage tank is likely present below this area. Additional traverses were run in peripheral areas surrounding the site. The traverse north of the building showed no unusual features. The traverse along the southern side of the building showed a small metallic target at about two foot depth about 55 feet from a power pole, and general signal attenuation at shallow depth in the vicinity of the Drum Storage Area. A GPR traverse in the area west of the building showed several clear stratigraphic interfaces in the subsurface, and signal returns suggestive of small boulders resting on the interfaces or within stratigraphic units (10-15 feet depth). 2-3 #### 3.0 SOIL SAMPLING Because of the contamination found on site during the Phase 1 investigation, it was recommended that offsite soils on adjacent property be sampled and that additional onsite samples be collected to better estimate the extent and depth of contamination. The locations of these samples are shown on Figure 3-1. #### 3.1 OFFSITE SURFICIAL SOILS Soil samples were collected from adjacent property potentially downgradient to the west and east of the Jard facility. A soil sample was also collected from the storm drain exiting the site on the northwest boundary. All samples were collected using a hand trowel and shovel. After each sample was collected, the equipment was rinsed with methanol and then deionized water. Four samples of the surface soil material from the edge of the Little League ball field west of the facility were collected. These locations are labeled as BF-1, BF-2, BF-3, and BF-4 on Figure 3-1. These samples were composited and a single soil sample was sent for laboratory analysis of PCB (EPA Schedule 608). On the south side of the facility, between the facility and the creek, four soil samples (S1, S2, S3, and S4) were collected and composited. A single soil sample was sent for laboratory analysis for PCB. On the northwest property boundary, sediment in a storm drain pipe in a ditch exiting the site was sampled. #### 3.2 ONSITE SOIL SAMPLING Six test pits were excavated to estimate the extent and depth of contamination. Locations of the test pits were chosen to be near either known or suspected areas of contamination. In each test pit, soils were sampled and composited into shallow (0 to 3 feet) and deeper (3 feet to water table) samples. If the water table was relatively deep (greater than 6 feet), a third intermediate 3-1 31.02/21/91.00272.01 HRS Reference #36 Page 16 of 149 sample was collected. Each soil sample was sent to the laboratory for analysis for volatile and semi-volatile organic compounds (EPA 601 and 602), phthalates (EPA 606), PCB's (EPA 608), and zinc. In test pits where the water table was encountered and a sample was obtainable (TP-1, TP-2, TP-3, and TP-5), unfiltered water samples were collected for the same suite of analyses. All water samples were high in sediment. Test pit logs are presented in Appendix A. All test pits encountered sand, gravel, and boulders. Field readings using an HNU photoionization detector were all near the baseline levels (less than one part per million). Test Pit 1. On the northwest side of the facility, thin fill unit overlying rounded sand, gravel, and boulders. Water table was encountered at 7.5 feet. Three soil composites (TP-1A, TP-1B, and TP-1C) and a water sample (TP-1GW) were collected. Test Pit 2. On the southeast side of the building near the drain storage area. Sand and gravel with some boulders. Water table at 2.5 feet. One soil composite (TP-2A) and a water sample (TP-2GW) were collected. Test Pit 3. On the south side of the building. Some fill overlying sand and cobbles. Strong organic odor, described in the field as similar to a leachfield. Dark black, oily free product visible at about 3.5 feet deep, on top of the water table surface. One soil composite (TP-3A) and a water sample (TP-3GW) were collected. Test Pit 4. On the east side of the building, just south of the concrete structure. Fill and sand. Stopped excavation at 2.5 feet because of the presence of a buried PVC pipe. Soil was moist. One soil sample (TP-4A) was collected. No water was encountered. Test Pit 5. On the southwest side of the building, in the area near a concrete structure and associated standpipes. Sand, gravels, and boulders. Groundwater encountered at 6.5 feet. A sheen was noted on the water. Two soil samples (TP-5A and TP-5C) and a water sample (TP-5GW) were collected. Test Pit 6. On the west side of the building. Fill, sand and gravel, with boulders. Groundwater at eight feet. Two soil samples (TP-6A and TP-6C) were 3-2 collected. No water sample was collected because the pit was unstable and collapsed. 3-3 31.02/21/91.00272.01 HRS Reference #36 Page 18 of 149 #### 4.0 GROUNDWATER SAMPLING In order to
obtain groundwater samples for chemical analysis and to obtain groundwater levels for estimating the direction of groundwater flow, five monitoring wells were installed. The wells were installed by Clean Harbors, Inc. using hollow stem auger techniques. Because of the frequency of boulders expected during drilling, no attempt was made to obtain soil samples during the drilling. Rather, each of the five wells was located adjacent to one of the test pits, and lithologic data obtained from test pit logs was assumed applicable to the well description. In all cases, the surficial soils are comprised of sand, gravel, and occasional cobbles and boulders. All wells were installed using 2-inch PVC pipe, with a number 10-slot 5-foot screen. After the wells were drilled and installed, each standpipe was developed by bailing until the bailed water was clear or relatively free of turbidity. Water from wells MW-1A, MW-2A, and MW-6 contained some fine materials even after development was complete. Liquid from well MW-3A consisted of both an aqueous and non-aqueous phase. Water samples were collected during the following week for the same analyses as completed on test pit samples (EPA Schedules 601, 602, 606, and 608, and zinc). Well MW-WE-1. Adjacent to test pit 1 on the northwest part of the site, the well has a total depth of 11.4 feet. Water level during drilling was about 7.5 feet below land surface. Well MW-WE-2. Adjacent to test pit 2 near the outdoor storage building. The well has a total depth of 7.0 feet. Water level during drilling was estimated to be 2.5 feet below land surface. Well MW-WE-3. Adjacent to test pit 3 on the south side of the building. The well has a total depth of 8.5 feet. Water level during drilling was estimated to be 3.5 feet below land surface. 4-1 Well MW-WE-4. Adjacent to test pit 4 on the east of the building. The well has a total depth of 7.5 feet. Water level during drilling was about 3 feet below land surface. Well MW-WE-6. Adjacent to test pit 6 on the west of the building. The well has a total depth of 11.8 feet. Water level during drilling was about 8 feet below land surface. No well was installed near Test Pit 5, because of the proximity of MW-WE-3 and the existence of prior data collected from the concrete structure near Test Pit 5. #### 4.1 WATER LEVEL MEASUREMENTS Static water levels were measured in each well on June 13, 1990. Water levels were: | WELL | WATER LEVEL (feet below land surface) | |---------|---------------------------------------| | MW-WE-1 | 6. 5 | | MW-WE-2 | 2. 9 | | MW-WE-3 | 4.6 | | MW-WE-4 | 3.0 | | MW-WE-6 | 8.0 | Because the wells were not field surveyed, the exact elevations of each well was not available. The site, however, is generally paved and level. If land surface is assumed to be virtually level, groundwater flow is southeasterly across the site, generally from the direction of MW-WE-1 toward MW-WE-2. HRS Reference #36 Page 20 of 149 #### 5.0 RESULTS AND CONCLUSIONS Analytical data from soil and water samples are presented in Appendices C, D, and E, and summarized in Tables 5-1, 5-2, 5-3, and 5-4. Appendix C includes soil chemical data from the test pits. Appendix D includes water quality data from the test pits. Appendix E includes water quality data from wells. All the data are summarized as follows: Table 5-1. Soil Test Pit Data. Table 5-2. Water Quality in Test Pits. Table 5-3. Water Quality in Wells. Table 5-4. Oil Phase Chemistry in Well MW-3A. Offsite soil samples analyzed for PCB's were below applicable quantitation limits. Specifically, soils on the south side of the property (S1 - S4) were below the quantitation limit of 20 mg/kg. Soils on the west side near the ball field (BF-1-BF-4) and from the street drain on the northwest part of the site were below the quantitation limit of 0.2 mg/kg. Water samples from the wells were comparable with test pit results. Most measured contaminants were in MW-3 and TP-3. Of the few volatile and semi-volatile compounds which were detected in MW-3, MW-4, and MW-6, all were below applicable State Enforcement Standards except for concentrations of trichloroethene of 6 micrograms per liter ($\mu g/1$)in MW-6 and 7 $\mu g/1$ in MW-3 (Standard of 5 $\mu g/1$), and of vinyl chloride of 3 $\mu g/1$ in MW-3 (Standard of 2 $\mu g/1$). Phthalates were measured in all samples, ranging between 0.026 milligrams per liter (mg/1) in the field blank and 2.8 mg/1 in MW-6. Phthalates in water from MW-3 were 110,000 mg/1. PCB concentrations were below the quantitation limit of 0.001 mg/1 in the field blank, but measurable in all other samples ranging between 0.022 mg/1 in MW-1 and 0.16 mg/1 in MW-6. PCB's in water from MW-3 were HRS Reference #36 Page 21 of 149 ## TABLE 5-1 TEST PIT SOILS - CHEMICAL DATA SUMMARY | COMPOUND | TP-1A | TP-18 | TP-1C | TP-2A | TP-3A | TP-4A | TP-5A | TP-50 | TP-6A | TP-6C | |----------------------------|-------|-------|-------|-------|------------|-------|-------|-------|-------|-------| | Total Xylenes | - | • | - | _ | 3 | • | - | - | - | - | | Diethylphthalate | - | • | • | 1.1 | - . | 0.75 | | - | - | - | | Di-n-butyl phthalate | 0.38 | | | | - | 1.0 | 0.93 | - | | 0.66 | | bis(2-ethylhexyl)phthalate | - | - | | 33 | 3000 | 130 | 4.1 | | 4.1 | | | Di-n-octylphthalate | | - | - | | - | - | 1.1 | | - | | | Aroclor 1242 | 7.5 | 2.1 | 1.1 | 0.6 | . 77 | 37 | 10 | 0.3 | 13 | 35 | | Zinc | 26 | 19 | 20 | 94 | 2600 | 940 | 43 | 82 | 56 | 120 | - Indicates analysis was below quantitation limit. Concentrations in milligrams per kilogram (mg/kg). All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits. TABLE 5-2 TEST PIT WATER SAMPLES - CHEMICAL DATA SUMMARY | COMPOUND | TP-1GW | TP-2GW | TP-3GW | TP-5GW | |-----------------------------------|--------|--------|----------------------|--------| | 1,1-Dichloroethane | | - | 22 | - | | trans-1,2-Dichloroethene | - | - | 7 | - | | 1,1,1-Trichloroethane | - | 19 | 8 | - | | Trichloroethene | - | 23 | - | - | | Chlorobenzene | - | - | 8 | - | | 1,4-Dichlorobenzene | | - | 23/36 ⁽¹⁾ | - | | Ethylbenzene | - | • | 10 | - | | Toluene | - | - | 48 | - | | Total Xylenes | - | - | 79 | - | | Diethylphthalate (mg/ℓ) | - | - | 23 | - | | bis(2-ethylhexyl)phthalate (mg/l) | 0.13 | 0.23 | 5500 | 0.15 | | Aroclor 1242 (mg/ℓ) | 0.03 | 0.06 | 3.0 | - | | Zinc (mg/ℓ) | 0.9 | 4.9 | 32 | 3.0 | - Indicates analysis was below quantitation limit. All concentrations in micrograms per liter $(\mu g/\ell)$, except as noted. All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits. (1) 23 μ g/ ℓ was in EPA 601 analysis; 36 μ g/ ℓ was in EPA 602 analysis. HRS Reference #36 Page 23 of 149 TABLE 5-3 GROUNDWATER CHEMICAL DATA SUMMARY | COMPOUND | MW-1A | MV-2A | MW-3A | MV-38 | MU-4A | H4-6A | HN-9A(4) | |-----------------------------------|-------|-------|----------------------|----------------------|-------|-------|----------| | Vinyl Chloride | • | | 3 | 3 | - | - | - | | 1,1-Dichloroethane | - | • | 24 | 24 | - | 11 | - | | trans-1,2-dichloroethene | • | - | 14 | 15 | • | • | | | 1,1,1-Trichloroethane | - | - | 6 | 7 | 4 | 6 | <u> </u> | | Trichloroethene | - | - | - | • | - | 6 | - | | 1,3-Dichlorobenzene | • | - | - | 2 | | • | | | 1,3-Dichlorobenzene | - | - | 4 | 2/7 ⁽²⁾ | | - | - | | 1,4-Dichlorobenzene | - | - | 12/17 ⁽¹⁾ | 16/24 ⁽³⁾ | • | 7 | <u> </u> | | Ethylbenzene | | - | - | 2 | • | - | <u>.</u> | | Toluene | - | - | 11 | 13 | • | • | <u> </u> | | Total Xylenes | | - | 3 | 17 | • | - | <u> </u> | | bis(2-ethylhexyl)phthalate (mg/l) | 0.033 | 0.052 | 110,000 | 98,000 | 0.038 | 2.8 | 0.026 | | Aroclor 1242 (mg/£) | 0.022 | 0.093 | 390 | 280 | 0.023 | 0.16 | - | | Zinc (mg/t) | 0.2 | 0.03 | 3.2 | 5.9 | 0.07 | 0.06 | <u> </u> | ⁻ Indicates analysis was below quantitation limit. All concentrations in micrograms per liter ($\mu g/\ell$), except as noted. All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits. MW-3B is a duplicate analysis of MW-3A. - (1) 12 μ g/ ℓ was in EPA 601 analysis; 17 μ g/ ℓ was in EPA 602 analysis. - (2) 2 μ g/ ℓ was in EPA 601 analysis; 7 μ g/ ℓ was in EPA 602 analysis. - (3) 16 μ g/ ℓ was in EPA 601 analysis; 24 μ g/ ℓ was in EPA 602 analysis. - (4) MW-9A is a field blank. #### TABLE 5-4 GROUNDWATER (OIL PHASE) CHEMICAL DATA SUMMARY | COMPOUND | MW-3A | MW-3B | |--------------------------|-------|----------------------------| | 1,1-Dichloroethane | 2200 | 2100 | | trans-1,2-Dichloroethene | 1400 | 1500 | | 1,1,1-Trichloroethane | 2500 | 2400 | | Chlorobenzene | 550 | 570 | | 1,3-Dichlorobenzene | 1500 | 1500/10000(2) | | 1,4-Dichlorobenzene | 14000 | 14000 | | Chlorobenzene | 550 | 720 | | 1,4-Dichlorobenzene | 14000 | 14000/30000 ⁽³⁾ | | Ethylbenzene | _(1) | 1800 | | Toluene | _(1) | 8400 | | Total Xylenes | _(1) | 16000 | | Aroclor 1242 (mg/kg) | 2500 | 3100 | ⁻ Indicates analysis was below quantitation limit. All concentration in micrograms per liter $(\mu g/\ell)$, except as noted. All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits. - (1) Quantitation limit of 0.5 μ g/ ℓ . - (2) 1500 μ g/ ℓ was in EPA 601 analysis; 10000 μ g/ ℓ was in EPA 602 analysis. - (3) 14000 μ g/ ℓ was in EPA 601 analysis; 30000 μ g/ ℓ was in EPA 602 analysis. HRS Reference #36 Page 25 of 149 390 mg/l. Zinc concentrations were low in all samples. The duplicate analysis on MW-3 confirmed the measured concentrations of all detected compounds. Most samples from the test pits were generally free of contamination. The obvious exception was soil from Test Pit 3. The only volatile or semi-volatile compound detected in the soils was total xylenes of 3 μ g/l in TP-3A, just above applicable quantitation levels and well below State Enforcement
Standards (see Table 5-1). Test pit water samples from TP-2 and TP-3 had low concentrations of several chlorinated solvents and BTEX compounds (see Table 5-2). Only 23 μ g/l chloroethene in TP-2GW was above its State Enforcement Standards of 5 μ g/l. Phthalates were detected at relatively low concentrations in shallow samples from Test Pits 1, 2, 4, 5, and 6. Much larger concentrations were detected in Test Pit 3. PCB concentrations ranged between 0.3 and 77 mg/l, with samples from Test Pits 3, 4, and 6 greater than 10 mg/l. Zinc concentrations were generally low, with a maximum concentrations in Test Pit 3 of 2600 mg/l. Water samples from the test pits are probably not representative of dissolved concentrations because they were unfiltered samples, with large amounts of sediment. In sampling the liquid in well MW-3, it was observed that two phases were present. The laboratory separated the phases in analyses for volatiles and semi-volatiles (EPA 601 and 602), and PCB's (EPA 608). The entire sample was analyzed for phthalates (EPA 601) and zinc. Table 5-4 presents results of analysis of the oil phase for EPA 601, 602, and 608 compounds. In order to discuss the results of the Phase 2 sampling, it is necessary to compare these results with the Phase 2 results presented in an earlier report. The following conclusions are believed reasonable: Surficial soils (the upper 12 inches) at the site are locally contaminated with variable levels of PCB's and phthalates. The most significant contamination seems to occur near one of the two dry wells near the southwest and eastern walls of the building, the drum 5-2 - storage area, or the assumed leachfield on the southeast side of the building. - Deeper soils (down to eight feet in depth), except in the vicinity of Test Pit 3 and, possible, Test Pit 6, generally seem free of contamination. - Significant levels of volatile and semi-volatile compounds seem limited to surficial contamination near the drum storage area and, possibly, near Test Pit 6. - Groundwater is contaminated near TP-3 with high levels of process chemicals. Groundwater from MW-6 had elevated levels of trichloroethene. Low concentrations of PCB's and phthalates were present in all water samples collected onsite. These low concentrations may not be in the dissolved phase because the water samples contained high sediment loads. In order to discuss the significance of the chemical results, it is helpful to review applicable State and Federal Standards as they apply to chemicals found on site. The primary concerns are potential health effects from either PCB's or phthalates. Of lesser concern, because of more limited occurrence, are health effects from chlorinated solvents. The clean-up goals for PCB's in soils have been variable, but generally have been between 1 and 50 mg/l. The lower concentrations have generally been recommended in residential areas. Industrial areas have had cleanup levels recommended between 10 and 50 mg/l, depending on potential environmental or human exposure pathways. Recent reevaluation of the individual cancer risk assessment data for PCB's suggests that various containment or exposure reduction scenarios short of removal may be sufficient (INSIDE EPA Weekly Report, Vol. 11, No. 35, August 31, 1990, p.16). In reference to an early draft of a planned EPA guidance document, it has been suggested that PCB's are a principal threat at 100 mg/kg in residential areas and at 500 mg/kg in industrial areas. 5-3 PCB's in water have a Proposed Federal Maximum Contaminant Level (MCL) of 0.0005 mg/l. Although all water samples collected on site were above this level, Wehran does not believe that there is necessarily a major groundwater contamination problem. Because the water samples were not filtered, it is likely that the measured PCB's were particulate rather than dissolved. Whatever level of cleanup is ultimately recommended for PCB's in site soils, it is likely that shallow and deeper soils near TP-3, and at least shallow soils near TP-4 and TP-5 will need to be remediated. Except for soils near TP-3 (where free product exists in the subsurface), remediation could consist conceivably of containment or exposure reduction measures. Phthalates are the subject of ongoing toxicologic research. The EPA has concluded (Federal Register, Vol. 53, No. 14, January 22, 1980, p.1895) that butylbenzyl phthalate (BBP) and bis(2-ethylhexyl)phthalate (DEHP) are the phthalates of health concern. EPA, as of July 5, 1990, has proposed a Primary Drinking Water MCL for DEHP of 0.004 mg/l. There are no known recommended soil standards for DEHP. DEPH, which is classified as a probable human carcinogen (Group B2), is the primary phthalate found in samples on site. As with the PCB data, all water samples collected (even including the field blank) exceeded the proposed MCL for DEHP. Because the water samples were not filtered, it is likely that the measured DEHP concentrations were based on a particulate rather than a dissolved source. Even if the blank concentration were subtracted as a baseline from the other samples, all would still exceed the Proposed MCL. Whatever level of cleanup is ultimately recommended for phthalates in site soils, the distribution of phthalates is very similar to the distribution of PCB's onsite. Any soil remediation will automatically address both compounds. Chlorinated solvents were below Vermont Enforcement Standards in all water samples, except for trichloroethene in soils near the Drum Storage Area. Chlorinated solvents are abundant, particularly in the oil phase, in liquid samples from MW-3. The only other water samples that indicate a potential contamination 5-4 problem are in samples from TP-3 and, possibly, MW-6. Because these samples were not filtered, the analysis does not reflect the aqueous phase. Whatever the remediation and cleanup levels proposed, solvents are significant near TP-3 and TP-2, and possibly a factor near TP-6. In summary, the Phase 2 investigation continued the assessment of the extent and depth of contamination onsite at the Jard Facility and on adjacent property. No evidence of contamination was found in adjacent soils. Contamination onsite appears restricted to "hot spots" of concentrated chemicals in association with former process stream disposal areas south and east of the facility. Groundwater is contaminated locally in the vicinity of TP-3, where free product was observed during excavation and drilling. Broad only d 5-5 #### 6.0 RECOMMENDATIONS The cost of any remediation will be dependent on the volumes of soils needing treatment. This volume, in turn, is dependent on the cleanup level recommended for the site. The cleanup level is dependent on containment or exposure reduction scenarios acceptable as part of site remediation. It is assumed that soil remediation, but not necessarily groundwater treatment, will be necessary for the site, based on the low mobilities of chemicals found in the subsurface, the general lack of confirmed groundwater contamination, and the lack of nearby receptors. As part of the evaluation of the most appropriate remediation plan for the site, are recommended: - Determine applicable State guidance levels for required cleanup of site soils. This determination will include consideration of any containment or exposure reduction scenarios (paving, for example) considered applicable for future site plans, along with limited exposure pathways for environmental or human health risks. - Excavate soils in hot spots. The estimated volumes of soils needed to be removed will be confirmed by analysis of soils collected during the excavation process. - Concurrent with soil excavation, sample water from onsite wells for EPA Schedules 601, 602, 606, and 608. Filter water for analysis for EPA 606 and 608 compounds. 6-1 31.02/21/91.00272.01 Page 30 of 149 ## APPENDIX A TEST PIT LOGS HRS Reference #36 Page 31 of 149 HRS Reference #36 Page 32 of 149 HRS Reference #36 Page 36 of 149 | | WE WE | | ENGINEERING
IGNERS | PROJECT No. 00272. | | TEST PIT LOGS | |---|---------------|--------------|-----------------------|--|--------|--| | | PROJECT: | TARD | | 1 100201 110 00272. | 01 1 | SHEET 1 OF 1 | | 7 | CLIENT: | | | | | | | | CONTRACTO |)R : C | LEAN HARB | ORS EQUIPMENT: | | | | | DEPTH TO | | | | | SPRAGUE/ANDREA ASCH | | | WELL | | | No. TP-6 Date: 5 | /9/90 | Elevation | | 1 | CONSTRUCTION | DEPTH
FT. | SAMPLE
No. DEPTH | CLASSIFICATION. | | REMARKS | | | | | | GRAY SAND AND GRAVEL, DRY - FILL FOLLOT BROWN SAND, SOME GRAVEL, SOME BOULL COBBLES, LITTLE SILT. | | 0-3' COLLECT GRAB SOIL SAMPLE -
ANALYZED IN ACCORDANCE WITH
EPA METHODS 8010, 8020, 606,
PCB. | | 1 | in Test Pit | - 5 - | | COBBLES, LITTLE SIEI. | | 3-6' COLLECT GRAB SOIL SAMPLE -
ANALYSIS SAME AS ABOVE. | | 1 | not installed | | | GROUNDWATER AT 8' 🛣 | | 6'-8' COLLECT GRAB SOIL SAMPLE -
ANALYSIS SAME AS ABOVE. | | | ıst | | | BOTTOM OF EXCAVATION ~ 8' | | | | 1 | well | —10 — | | | | * COULD NOT GET SAMPLE OF
GROUNDWATER BECAUSE TEST PIT
WAS UNSTABLE AND MATERIAL
COLLAPSED INTO THE BOTTOM OF
THE PIT. | | | Monitor | -15 - | | | | • | | I | - | | | · | | | | I | | -20- | • | , | | • | | 1 | COMMENTS | 1 | | | | | | _ | COMMENTS | | ocation: | west side of building. | betwee | n powerlines and | | ł | | bı | uilding. | | | | | | | | | | | | HRS Reference #36 Page 37 of 149 # APPENDIX B MONITORING WELL CONSTRUCTION DIAGRAMS HRS Reference #36 Page 38 of 149 HRS Reference #36 Page 40 of 149 HRS Reference #36 Page 41 of 149 HRS Reference #36 Page 42 of 149 # APPENDIX C TEST PIT SOIL CHEMICAL DATA HRS Reference #36 Page 44 of 149 INDUSTRIAL & ENVIRONMENTAL ANALYSTS, INC. 1901 NORTH HARRISON AVE. CARY, N.C. 27513
CHAIN OF CUSTODY RECORD 45.7 | HRS | | | 1901 NO
CARY, N | | | RISO | N AVE. | | | | | | | | <i>"</i> | | | | Sour, | g T | | | - 4 | F 4 1 | | |-----------|----------------|---------|--------------------|------|-------------|--------|-----------|-------------------------|--------|----------------|----------|-------|----------------------|---------------|-------------|--|----------|--------|--------|--|--------------------|-------|---------------|-------|-----------| | S Ref | PROJE | CT# | | | | PRO | JECT NAM | IE Y | | С | 10: | 3.3 | | $\overline{}$ | 大 | _ | REQU | ESTE | D PA | RAM | ETER | S | | · . | | | erence | 20272 | .01 | 21 | 4121 | > | | | | 4 | 120 | MAT | 4.73 | 7 | 7 | | - | ~~~ | 7 | 7 | | > y- | 7 | / | 7 | | | e #36 | SAMPLEF | | | | <i>4</i> 60 | e : To | region of | and the beautiful party | | A | 137 | £3. | /2 | · /. | . / | 7/4 | 5_/ | | | /, | Trans | / | | / | / | | o, | Cynth | ar S | ngp | ^ | | | | | 0 | F 7E | \$0. | SAFER | P0/8/20 | PC8/62 | | Pinc (| | 8 | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | SAMPLE
I.D. | DATE | TIME | 18 | GRAB
* | | STATIO | N LOCATION (| 44 | RS | 00-L | шR | 100 | 76 | ρ_{CB} | \\(\tilde{\chi}\) | 138 | PCB | 909 | / X | | | | | / | | | TPIA | 5-9-90 | 10:30 | | X | Te | st pit | 1 0-3' | | 2 | X | | \times | X | | × | | | | | | | | | | | | 7P1B | 5 4.90 | صد,تور | | X | 70 | t pit 1 | 3-6' | | 2 | X | • | X | × | | X | | | | | | | | | | | | 791C | 5.9.90 | 0830 | | X | 7es | + pit 1 | 7,5' | | 2 | X | | × | X | | X | | | | | | | | | | | | TPZA | 5 .9.90 | 12)00 | | X | Tes | + pit 2 | 0-2.5' | | 2 | × | | X | X | | X | | | | | | | | | | | | TP 260 | 5-9-90 | 12;00 | | | Test | t pit 2 | 2 grunduate | - | 6 | | X | | | | | X | X | X | X | | | | | | | | TP16W | 5.9.40 | 10:30 | | | Îst | tpit 1 | g nundwak- | / | 6 | | X | | | | | X | × | X | X | | | | | | | ! | TP3A | 59.40 | 12:30 | | X | Tes | t pit 3 | 0-2.5' | | \overline{z} | X | | $\overline{\lambda}$ | × | | X | | | | | | | | | | | | 793 W | 5.9.90 | 12:30 | | | 7est | pit 3 | grundaak- | | 6 | | X | | | | | X | X | X | × | | | | | | | | TP4A | 5.4.90 | 11.30 | | X | Test | pit 4 | 0-25' | | Z | X | | X | X | | X | | | | | | | | | | | | TP5A | | | | \times | ĪPS | + pi15 | 0-3' | | Z | X | | × | X | | X | | | | | | | | | | | | TP5C | 5.9.90 | 2;05 | | X | Trs/ | tpit5 | 6-6.5 | | Z | X | | X | X | | X | | | | | | | | | | | TO | TP56W | | L | | | Test | -pit 5 | grunducti- | - | 6 | | X | | | | | \times | 火 | X | X | | | | | | | age . | RELINQU | | | | | ATE | TIME | RECEIVE | | | | DAT | | | \$ 148 B | 海流利E | A QUO | TENO | | 6. 台灣市 | · 美尼斯特 | ∜ IEA | RUSH | NO. | S14.25.55 | | 45 of 149 | Gul | My | M | l | 5. | 10:40 | 3:20 | tracys & | ut | the | ria | | | | | | | | | | | | | | | | 49 | RELINQU | SHEWE | r (\$)GNA | TURE |) D | ATE | TIME | RECEIVED FO | OR LAI | B BY | \dashv | DAT | E | IME | F PRO | ECT | IANAG | ER (PL | EASE P | RINT) 🌣 | 1 | 399 | |) | | | | | | | | | | IEA REM | ARKS | , | | | | | | | | | | FIELD | REMA | <u> </u> | Date: May 24, 1990 Cindy Sprague Wehren Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 Reference: IEA Report No. 237130 PO # Dear Cindy: Transmitted herewith are the results of analyses on 17 samples submitted to our laboratory on 5/10/90. Please see the enclosed reports for your results. Yery truly yours, INDUSTRIAL & ENVIRONMENTAL ANALYSTS, INC. Paul S. Warden Staff Scientist Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 47 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 #### LAB RESULTS 5/25/90 Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 IEA # 237130 Date Received: 5/10/90 Total Samples Received: 17 Date Collected: 5/9/90 Total/Parameters Requested: 69 Reviewed & Approved by JARD | HILL | ntion: Cindy Sprague | Revies | red & Approved by | 1aller - | |------|----------------------|--------------------|-------------------|----------------------| | Se# | Sample I.D. | Parameter Studied | Results | Comments | | 1 | TP-1A | CX606 | - | See attached sheets. | | 2 | TP-1B | CX606 | - | See attached sheets. | | 3 | TP-1C | CX606 | - | See attached sheets. | | 4 | TP1-GW | CW606 | - | See attached sheets. | | 5 | TP-2GW | CW606 | - | See attached sheets. | | 6 | TP-3GW | CW606 | - | See attached sheets. | | 9 | TP-5GW | CW606 | - | See attached sheets. | | 10 | TP-2A | CX606 | - | See attached sheets. | | 11 | TP-3A | CX606 | - | See attached sheets. | | 12 | TP-4A | CX606 | - | See attached sheets. | | 13 | TP-5A | CX606 | - | See attached sheets. | | 14 | TP-6A | CX606 | - | See attached sheets. | | 15 | TP-5C | CX606 | - . | See attached sheets. | | 16 | TP-6C | CX606 | - | See attached sheets. | | 4 | TP1-GW | GC Methods601/602 | - | See attached sheets. | | 5 | TP-2GW | GC Methods 601/602 | - | See attached sheets. | | 6 | TP-3GW | GC Methods601/602 | - | See attached sheets. | | 9 | TP-5GW | GC Methods601/602 | - | See attached sheets. | | 1 | TP-1A | PCB in soil | - | See attached sheets. | | 2 | TP-18 | PCB in soil | - | See attached sheets. | | 3 | TP-1C | PCB in soil | - | See attached sheets. | | 7 | BF1-4 | PCB in soil | - | See attached sheets. | | 8 | 1-4 South composite | PCB in soil | - | See attached sheets. | | 10 | TP-2A | PCB in soil | - | See attached sheets. | | • • | TP-3A | PCB in soil | | See attached sheets. | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 48 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 #### LAB RESULTS 5/25/90 Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 Attention: Cindy Sprague IEA # 237130 JARD Date Received: 5/10/90 90 Total Samples Received: 17 Date Collected: 5/9/90 Total Darafleters/Requested: 69 Reviewed & Approved by _ | | Sa# | Sample I.D. | Parameter Studied | Results | Comments | |----------|-----|--------------|------------------------------|------------|----------------------| | | 12 | TP-4A | PCB in soil | - | See attached sheets. | | | 13 | TP-5A | PCB in soil | - | See attached sheets. | | | 14 | TP-6A | PCB in soil | - | See attached sheets. | | L.;
— | 15 | TP-5C | PCB in soil | - | See attached sheets. | | | 16 | TP-6C | PCB in soil | - | See attached sheets. | | i, | 17 | Street Drain | PCB in soil | - | See attached sheets. | | | 4 | TP1-GW | PCB in water | - | See attached sheets. | | | 5 | TP-2GW | PCB in water | - | See attached sheets. | | | 6 | TP-3GW | PCB in water | - | See attached sheets. | | 7 | 9 | TP-5GW | PCB in water | - | See attached sheets. | | ł | 1 | TP-1A | SW-846 Method 8010 (special) | - | See attached sheets. | | Ŀ | 2 | TP-1B | SW-846 Method 8010 (special) | - | See attached sheets. | | L | 3 | TP-1C | SW-846 Method 8010 (special) | - | See attached sheets. | | _ | 10 | TP-2A | SW-846 Method 8010 (special) | - | See attached sheets. | | Γ | 11 | TP-3A | SW-846 Method 8010 (special) | - | See attached sheets. | | | 12 | TP-4A | SW-846 Method 8010 (special) | - | See attached sheets. | | 17 | 13 | TP-5A | SW-846 Method 8010 (special) | - | See attached sheets. | | L. | 14 | TP-6A | SW-846 Method 8010 (special) | - | See attached sheets. | | r | 15 | TP-5C | SW-846 Method 8010 (special) | - | See attached sheets. | | | 16 | TP-6C | SW-846 Method 8010 (special) | - . | See attached sheets. | | | 1 | TP-1A | SW-846 Method 8020 (special) | - | See attached sheets. | | 13 | 2 | TP-1B | SW-846 Method 8020 (special) | - | See attached sheets. | | F | 3 | TP-1C | SW-846 Method 8020 (special) | - | See attached sheets. | | Ť | 10 | TP-2A | SW-846 Method 8020 (special) | - | See attached sheets. | | l | 11 | TP-3A | SW-846 Method 8020 (special) | - | See attached sheets. | | Comments: | | |-----------|--| | | | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 49 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 #### LAB RESULTS 5/25/90 Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 IEA # 2371'30 Date Received: 5/10/90 Total Samples Received: 17 **JARD** Date Collected: 5/9/90 Total Parameters Dequested: 69 | | Atte | ntion: Cindy Sprague | Reviewed & A | pproved by | Toules | |---------------|------------|----------------------|------------------------------|--------------|----------------------| | | <u>Sa#</u> | Sample I.D. | Parameter Studied | Results | Comments | | | 12 | TP-4A | SW-846 Method 8020 (special) | - | See attached sheets. | | _ | 13 | TP-5A | SW-846 Method 8020 (special) | - | See attached sheets. | | | 14 | TP-6A | SW-846 Method 8020 (special) | - | See attached sheets. | | · | 15 | TP-5C | SW-846 Method 8020 (special) | - | See attached sheets. | | [] | 16 | TP-6C | SW-846 Method 8020 (special) | - | See attached sheets. | | | 1 | TP-1A | Zinc, total | 25.8 mg/Kg | wet weight | | r | 2 | TP-1B | Zinc, total | 18.9 mg/Kg | wet weight | | | 3 | TP-1C | Zinc, total | 20.4 mg/Kg | wet weight | | | 4 | TP1-GW | Zinc, total | 0.924 mg/L | | | 1 | 5 | TP-2GW | Zinc, total | 4.87 mg/L | | | l
— | 6 | TP-3GW | Zinc, total | 32.0 mg/L | | | Γ | 9 | TP-5GW | Zinc, total | 3.04 mg/L | | | | 10 | TP-2A | Zinc, total | 93.7 mg/Kg | wet weight | | | 11 | TP-3A | Zinc, total | 2560 mg/Kg / | wet weight | | | 12 | TP-4A | Zinc, total | 942 mg/Kg | wet weight | | .
— | 13 | TP-5A | Zinc, total | 43.3 mg/Kg | wet weight | | 1 | 14 | TP-6A | Zinc, total | 55.6 mg/Kg | wet weight | | _ | 15 | TP-5C | Zinc, total | 82.3 mg/Kg | wet weight | | _ | 16 | TP-6C | Zinc, total | 120 mg/Kg | wet weight | |
| | | | | | | Comments: |
• |
 | | |-----------|-------|------|--| Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina Page 50 of 149 HRS Reference #36 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Semple No.: 237130 Sample Identification: TP-1A Date Analyzed: May 15, 1990 By: Averill Date Collected: May 9, 1990 | | | <u>Soil</u> | Results | |--------|--------------------------------|--------------------|---------------| | | | Quantitation Limit | Concentration | | Number | <u>Compound</u> | ца/Ка | μα/Κα | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethane , | 1.0 | BQL | | 15 | 1,2-Dichleropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | 1.0 | BQL | | 19 | 1,1,2-Trichleroethane | 1.0 | BQL | | 20 | Chlorodibromomethane | 1.0 | BQL | | 21 | 2-Chloroethylyinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachloroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | | 1.0 | BQL | | mments | BQL - BELOW QUANTITATION LIMIT | | | Cor Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina Page 51 of 149 HRS Reference #36 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Sample No.: 237130 1 Sample Identification: TP-1A Date Collected: May 9, 1990 Date Analyzed: May 15, 1990 By: Averill | Number | Compound | Soil
Quentitation Limit
ug/Kg | Results Concentration uq/Kq | |--------|---------------------|-------------------------------------|-----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | · 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | - 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 52 of 149 ## Phthalates EPA Method 606 Compounds IEA Sample Number: 237130 1 Sample Identification: TP-1A Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 21, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 | BQL | | 3 | Di-n-butyl phthalate | 350 | 380 | | 4 | Benzyl butyl phthalate | 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | BQL | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL = Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 53 of 149 #### PCB Summary Sheet IEA Sample No. 237130 1 Sample Identification TP-1A Date Extracted May 16, 1990 Date Analyzed May 17, 1990 By <u>Hedrick</u> | | SOIL | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 2.0 | BQL | | Aroclor 1221 | 2.0 | BQL | | Aroclor 1232 | 2.0 | BQL | | Aroclor 1242 | 2.0 | 7.5 | | Aroclor 1248 | 2.0 | BQL | | Aroclor 1254 | 2.0 | BQL | | Aroclor 1260 | 2.0 | BQL | | Total Aroclor Concentration | 2.0 | BQL | #### **Comments** #### **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 54 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Sample No.: 237130 Sample Identification: TP-18 Date Analyzed: May 15, 1990 By: Averill Date Collected: May 9, 1990 | <u>Number</u> | Compound | Soil
Quantitation Limit
pg/Kg | Results Concentration ug/Kg | |---------------|--------------------------------|-------------------------------------|-----------------------------| | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethone | 1.0 | BQL | | 15 | 1,2-Dichloropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | 1.0 | BQL | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodi bromomethane | 1.0 | BQL | | 21 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachloroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1_4-Dichlorobenzene | 1.0 | BQL | | | • | 1.0 | BQL | | Comments | BQL - BELOW QUANTITATION LIMIT | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina Page 55 of 149 HRS Reference #36 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Semple No.: 237130 2 Semple Identification: IP-1B Date Collected: May 9, 1990 Date Analyzed: May 15, 1990 By: Averill | <u> Number</u> | Compound | Soil
Quantitation Limit
ug/Kg | Results Concentration ug/Kg | |----------------|---------------------|-------------------------------------|-----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | | Commente | BQL - BELOW QUANTITATION LIMIT | | | |----------|--------------------------------|--|--| | | • | | | | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 56 of 149 #### Phthalates EPA Method 606 Compounds IEA Sample Number: 237130 2 Sample Identification: TP-1B Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 21, 1990 | Number | Compound | Soil
Quanti
Limit
µg/Kg | Concentration
un/Kn | |--------|----------------------------|----------------------------------|------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 | BQL | | 3 | Di-n-butyl phthalate | 350 | BQL | | 4 | Benzyl butyl phthalate | 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | BQL | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 57 of 149 ## Purgeable Halocarbons SW-846 Method 8010 Compounds Date Analyzed: May 15, 1990 IEA Sample No.: <u>237130</u> Sample Identification: TP-1C May 9, 1990 By: Averill Date Collected: | | | <u>Soil</u> | Results | |---------------|---------------------------|--------------------|----------------------| | | | Quantitation Limit | Concentration | | <u>Number</u> | Compound | ца/Ка | μα/Κα | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | 8QL | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethene | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethane | 1.0 | BQL | | 15 | 1,2-Dichloropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | 1.0 | BQL . | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodibromomethane | 1.0 | BQL | | 21 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachloroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | | 1.0 | BQL | **Comments** | BAT - REFOR MOUNTHALION FILLI | | |-------------------------------|--| | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina Page 58 of 149 HRS Reference #36 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 #### **PCB Summary Sheet** Sample Identification
TP-1B Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u>SOIL</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 0.2 | BQL | | Aroclor 1221 | 0.2 | BQL | | Aroclor 1232 | 0.2 | BQL | | Aroclor 1242 | 0.2 | 2.1 | | Aroclor 1248 | 0.2 | BQL | | Aroclor 1254 | 0.2 | BQL | | Aroctor 1260 | 0.2 | BQL | | Total Aroclor Concentration | 0.2 | BQL | #### Comments **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 59 of 149 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Semple No.: <u>237130</u> <u>3</u> Semple Identification: <u>TP-1C</u> Date Collected: May 9, 1990 Date Analyzed: May 15, 1990 By: Averill | <u>Number</u> | Compound | Soil
Quantitation Limit
µq/Kq | Results Concentration µq/Kq | |---------------|---------------------|-------------------------------------|------------------------------| | 1 | Benzene | . 1.0 | BQL | | 2 | Chlorobenzene | . 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | , 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | . 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 60 of 149 #### Phthalates EPA Method 606 Compounds IEA Sample Number: 237130 3 Sample Identification: TP-1C Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 21, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 | BQL | | 3 | Di-n-butyl phthalate | 350 | BQL | | 4 | Benzyl butyl phthalate | 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | BQL | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 61 of 149 #### **PCB Summary Sheet** IEA Sample No. 237130 3 Sample Identification TP-1C Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u> S01L</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg · | | Aroclor 1016 | 0.2 | BQL | | Aroclor 1221 | 0.2 | BQL | | Aroclor 1232 | 0.2 | BQL | | Aroclor 1242 | 0.2 | 1.1 | | Aroclor 1248 | 0.2 | BQL | | Aroclor 1254 | 0.2 | BQL : | | Aroclor 1260 | 0.2 | BQL | | Total Aroclor Concentration | 0.2 | BQL | #### Comments **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 62 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Sample No.: 237130 10 Sample Identification: TP-2A Sample Identification: TP-2A Date Analyzed: Mey 15, 1990 Date Collected: May 9, 1990 By: Averill | | • | | <u>Soil</u> | Results | |--------|---------------------------|---|--------------------|---------------| | | | | Quantitation Limit | Concentration | | Number | <u>Compound</u> | | ца/Ka | uq/Kq | | 1 | Chloromethane | | 1.0 | BQL | | 2 | Bromomethane | : | 1.0 | BQL | | 3 | Yinyl Chloride | ; | 1.0 | BQL | | 4 | Chloroethane | | 1.0 | BQL | | 5 | Methylene chloride | | 1.0 | BQL | | 6 | Trichlorofluoromethane | | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1 | 1.0 | BQL | | 8 | 1,1-Dichloroethane | | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | | 1.0 | BQL | | 10 | Chloroform | | 1.0 | BQL | | 11 | 1,2-Dichloroethane | • | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | : | 1.0 | BQL | | 13 | Carbon tetrachloride | | 1.0 | BQL | | 14 | Bromodichloromethane | • | 1.0 | BQL | | 15 | 1,2-Dichleropropene | : | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | | 1.0 | BQL | | 17 | Trichloroethene | | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | | 1.0 | BQL | | 19 | 1,1,2-Trichloroethane | | 1.0 | BQL | | 20 | Chlorodibromomethane | | 1.0 | BQL | | 21 | 2-Chloroethylyinyl ether | | 1.0 | BQL | | 22 | Bromoform | | 1.0 | BQL | | 23 | Tetrachloroethene | | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | | 1.0 | BQL | | 25 | Chlorobenzene | | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | | 1.0 | BQL | | | ., | | 1.0 | BQL | | | | | | | **Comments** **BQL - BELOW QUANTITATION LIMIT** Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 63 of 149 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Sample No.: <u>237130</u> <u>10</u> Semple Identification: <u>TP-2A</u> Date Collected: May Mau 9, 1990 Date Analyzed: May 15, 1990 By: Averill | Number | Compound | Soil
Quantitation Limit
ug/Kq | Results <u>Concentration</u> <u>ug/Kg</u> | |--------|---------------------|-------------------------------------|---| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | - 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 . | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | **Comments** BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 64 of 149 ## Phthalates EPA Method 606 Compounds IEA Sample Number: 237130 10 Sample Identification: TP-2A Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 22, 1990 | Number | Compound | Son
Quantitation
Limit
· µg/Kg | Results
Concentration
µg/Kg | |------------|----------------------------|---|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | · 2 | Diethylphthalate | 350 | 1100 | | 3 | Di-n-butyl phthalate | [*] 350 | BQL | | 4 | Benzyl butyl phthalate | [:] 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | 33000 | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 65 of 149 #### **PCB Summary Sheet** Sample Identification TP-2A Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u>SOIL</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 0.2 | BQL | | Aroclor 1221 | 0.2 | BQL | | Aroclor 1232 | 0.2 | BQL | | Aroclor 1242 | 0.2 | 0.60 | | Aroclor 1248 | 0.2 | BQL | | Aroclor 1254 | 0.2 | BQL | | Aroclor 1260 | 0.2 | BQL | | Total Aroclor Concentration | 0.2 | BQL | **Comments** **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 66 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## **Purgeable Halocarbons** SW-846 Method 8010 Compounds IEA Sample No.: 237130 11 Sample Identification: TP-3A Date Analyzed: May 16, 1990 Date Collected: May 9, 1990 Bg: Averill | <u>Number</u> | Compound | <u>Soil</u>
Quantitation Limit
µq/Kq | Results Concentration μα/Κα | |---------------|--------------------------------|--|-----------------------------| | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyi Chloride | 1.0 | BQL | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethene | 1.0 | BQL | | 15 | 1,2-Dichloropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | 1.0 | BQL . | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodibromomethane | 1.0 | BQL | | - 21 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachioroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | | 1.0 | BQL | | omments | BQL - BELOW QUANTITATION LIMIT | | | Co Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 67 of 149 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Semple No.: 237130 11 Semple Identification: TP-3A Date Collected: May 9, 1990 Date Analyzed: May 15, 1990 By: Averill | <u> Number</u> | Compound | Soil
Quantitation Limit
uq/Kq | Results Concentration μη/Κη | |----------------|---------------------|-------------------------------------|-----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 |
1,4-Dichlorobenzene | 1.0 . | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | 3 | | Comments | BQL - BELOW QUANTITATION LIMIT | | | |----------|--------------------------------|--|--| | | | | | | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 68 of 149 #### Phthalates EPA Method 606 Compounds IEA Sample Number: 237130 11 Sample Identification: TP-3A Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 23, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 18000 | BQL | | 2 | Diethylphthalate | 18000 | BQL | | 3 | Di-n-butyl phthalate | 18000 | BQL | | 4 | Benzyl butyl phthalate | 18000 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 18000 | 3000000 | | 6 | Di-n-octylphthalate | 18000 | BQL | #### Comments: **BQL - Below Quantitation Limit** - (a) Quantitation limit elevated due to sample dilution prior to analysis. - (b) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 69 of 149 #### **PCB Summary Sheet** IEA Sample No. 237130 11 Sample Identification <u>TP-3A</u> Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By Hedrick | | <u>SOIL</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 20 | BQL | | Aroclor 1221 | 20 | BQL | | Aroclor 1232 | 20 | BQL | | Aroclor 1242 | 20 | 77 | | Aroclor 1248 | 20 | BQL | | Aroclor 1254 | 20 | BQL | | Aroclor 1260 | 20 | BQL | | Total Aroclor Concentration | 20 | BQL | #### **Comments** #### **BQL - BELOW QUANTITATION LIMIT** - (a) Target compound concentration adjusted for % moisture. - (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 70 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 Date Analyzed: May 16, 1990 ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Sample No.: 237130 <u>12</u> Sample identification: TP-4A By: Averill Date Collected: May 9, 1990 | <u>Number</u> | Compound | <u>Soil</u>
Quantitation Limit
µq/Kq | Results Concentration μα/Κα | |---------------|--------------------------------|--|-----------------------------| | 1 | Chloromethene | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyi Chloride | 1.0 | BQL | | 4 | Chloroethene | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethene | 1.0 | BQL | | 15 | 1,2-Dichloropropane | 1.0 | BQ L | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | 1.0 | BQL | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodibromomethane | 1.0 | 8 QL | | 21 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachloroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | | 1.0 | BQL | | comments | BQL - BELOW QUANTITATION LIMIT | | | Co Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina Page 71 of 149 HRS Reference #36 ## **Purgeable Aromatics** SW-846 Method 8020 Compounds IEA Sample No.: 237130 12 Sample Identification: TP-4A Date Collected: May 9, 1990 Date Analyzed: May 16, 1990 By: Averill | Number | Compound | Soil
Quantitation Limit
ug/Kg | Results Concentration uq/Kq | |--------|---------------------|-------------------------------------|-----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | . 1.0 | BQL | **Comments** **BQL - BELOW QUANTITATION LIMIT** Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 72 of 149 12 IEA Sample Number: 237130 Sample Identification: TP-4A Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 22, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 | 750 | | 3 | Di-n-butyl phthalate | 350 | 1000 | | 4 | Benzyl butyl phthalate | 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | 130000 | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 73 of 149 # Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## **PCB Summary Sheet** JUN 4 1990 IEA Sample No. 237130 12 Sample Identification TP-4A Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | • | <u>Soil</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 20 | BQL | | Aroclor 1221 | 20 | BQL | | Aroclor 1232 | 20 | BQL | | Aroclor 1242 | 20 | 37 | | Aroclor 1248 | 20 | BQL | | Aroclor 1254 | 20 | BQL | | Arocior 1260 | 20 | BQL | | Total Aroclor Concentration | 20 | BQL | #### **Comments** #### **BQL - BELOW QUANTITATION LIMIT** - (a) Quantitation limit elevated due to sample dilution prior to analysis. (b) Sample diluted due to high concentration of target compounds present. - (c) Target compound concentration adjusted for % moisture. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 74 of 149 ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Sample No.: 237130 13 Sample Identification: TP-5A Sample Identification: TP-5A Date Analyzed: May 16, 1990 Date Collected: May 9, 1990 By: Averill | | | <u>Soil</u> | Results | |---------------|---------------------------|--------------------|----------------------| | | | Quantitation Limit | <u>Concentration</u> | | <u>Number</u> | <u>Compound</u> | ца/Ка | <u> µq/Kq</u> | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | , 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethane | 1.0 | BQL | | 15 | 1,2-Dichloropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | . 1.0 | BQL | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodibromomethane | 1.0 | BQL | | 21 | 2-Chloroethylvinyl ether | 1.0 | 8QL | | 22 | Bromoform | 1.0 | BQ L | | 23 | Tetrachloroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | - | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 75 of 149 ## Purgeoble Aromatics SW-846 Method 8020 Compounds IEA Semple No.: 237130 13 Sample Identification: <u>TP-5A</u> Date Collected: May 9, 1990 Date Analyzed: May 15, 1990 By: Averill | Number | Compound | Soil
Quentitation Limit
uq/Kq | Results Concentration uq/Kq | |--------|---------------------|-------------------------------------|-----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | - 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 76 of 149 IEA Sample Number: 237130 13 Sample Identification: TP-5R Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 22, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 | BQL | | 3 | Di-n-butyl phthalate | 350 | 930 | | 4
 Benzyl butyl phthalate | 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | 4100 | | 6 | Di-n-octylphthalate | 3:50 | 1100 | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 77 of 149 IEA Sample No. <u>237130</u> <u>13</u> Sample identification TP-5A Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By Hedrick | | <u>SOIL</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 2.0 | BQL | | Aroclor 1221 | 2.0 | BQL | | Aroclor 1232 | 2.0 | BQL | | Aroclor 1242 | 2.0 | 10 | | Aroclor 1248 | 2.0 | BQL | | Aroclor 1254 | 2.0 | BQL | | Aroclor 1260 | 2.0 | BQL | | Total Aroclor Concentration | 2.0 | BQL | #### **Comments** #### **BQL - BELOW QUANTITATION LIMIT** - (a) Target compound concentration adjusted for % moisture. - (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 78 of 149 # Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Sample No.: <u>237130</u> <u>15</u> Sample Identification: TP-5C Date Analyzed: May 15, 1990 Date Collected: May 9, 1990 By: Averill | | | <u>Soil</u> | Results | |---------------|---------------------------|--------------------|----------------------| | | | Quantitation Limit | Concentration | | <u>Number</u> | <u>Compound</u> | да/Ка | <u>ua/Ka</u> | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQ L | | 14 | Bromodichloromethane | 1.0 | 8QL | | 15 | 1,2-Dichloropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | 1.0 | BQL . | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodibromomethene | 1.0 | BQL | | 21 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachloroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 79 of 149 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Sample No.: <u>237130</u> <u>15</u> Sample Identification: <u>TP-5C</u> Date Collected: May 9, 1990 Date Analyzed: May 15, 1990 By: Averill | <u>Number</u> | Compound | Soil
Quantitation Limit
uq/Kq | Results Concentration uq/Kq | |---------------|---------------------|-------------------------------------|------------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes. | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 80 of 149 IEA Sample Number: 237130 15 Sample Identification: TP-5C Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 23, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 | BQL | | 3 | Di-n-butyl phthalate | 350 | BQL | | 4 | Benzyl butyl phthalate | 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | BQL | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 81 of 149 # Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## **PCB Summary Sheet** IEA Sample No. 237130 15 Sample Identification TP-5C Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u>SOIL</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 0.2 | BQL | | Aroclor 1221 | 0.2 | BQL | | Aroclor 1232 | 0.2 | BQL | | Aroclor 1242 | 0.2 | 0.3 | | Aroclor 1248 | 0.2 | BQL | | Aroclor 1254 | 0.2 | BQL | | Aroclor 1260 | 0.2 | BQL | | Total Aroclor Concentration | 0.2 | BQL | #### Comments **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 82 of 149 # Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 Date Analyzed: May 16, 1990 Soil Results ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Semple No.: 237130 Semple Identification: TP-6A By: Averill Date Collected: May 9, 1990 | | | <u>5011</u> | | |---------------|--------------------------------|--------------------|----------------------| | | | Quantitation Limit | Concentration | | <u>Number</u> | <u>Compound</u> | ца/Ка | μα/Κα | | 1 | Chloromethene | 1.0 | BQL | | ż | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethane | 1.0 | BQL | | 15 | 1,2-Dichloropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQL | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | 1.0 | BQL | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodibromomethane | 1.0 | BQL | | 21 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachloroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | · | 1.0 | BQL | | mments | BQL - BELOW QUANTITATION LIMIT | | | | | | | 1 | Соп Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina Page 83 of 149 HRS Reference #36 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Semple No.: 237130 14 Semple Identification: TP-6A Date Collected: May 9, 1990 Date Analyzed: May 16, 1990 Bg: Averill | <u>Number</u> | Compound | Soil
Quantitation Limit
ug/Kg | Results Concentration uq/Kq | |---------------|---------------------|-------------------------------------|-----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 84 of 149 IER Sample Number: 237130 14 Sample Identification: TP-6A Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 23, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 | BQL | | 3 | Di-n-butyl phthalate | 350 | BQL | | 4 | Benzyl butyl phthalate | 350 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | 4100 | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 85 of 149 IEA Sample No. 237130 14 Sample Identification TP-6A Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u>SOIL</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 2.0 | BQL | | Aroclor 1221 | 2.0 | BQL | | Aroclor 1232 | 2.0 | BQL | | Aroclor 1242 | 2.0 | 13 | | Aroclor 1248 | 2.0 | BQL | | Aroclor 1254 | 2.0 | BQL | | Aroclor 1260 | 2.0 | BQL | | Total Aroclor Concentration | 2.0 | BQL | #### Comments #### **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research
Triangle Park, North Carolina HRS Reference #36 Page 86 of 149 ## Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## Purgeable Halocarbons SW-846 Method 8010 Compounds IEA Sample No.: 237130 16 Sample Identification: TP-60 Sample Identification: TP-6C Date Analyzed: May 16, 1990 Date Collected: May 9, 1990 By: Averill | | | <u> Soil</u> | Results | |--------------|--------------------------------|--------------------|---------------| | | | Quantitation Limit | Concentration | | <u>Numbe</u> | <u>Compound</u> | ug/Kg | μα/Κα | | 1 | Chloromethene | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | ÐQL. | | 4 | Chloroethane | 1.0 | BQL | | 5 | Methylene chloride | 1.0 | BQL | | 6 | Trichlorofluoromethane | 1.0 | BQL | | 7 | 1,1-Dichloroethene | . 1.0 | BQL | | 8 | 1,1-Dichloroethane | 1.0 | BQL | | 9 | trans-1,2-Dichloroethene | . 1.0 | BQL | | 10 | Chloroform | 1.0 | BQL | | 11 | 1,2-Dichloroethane | 1.0 | BQL | | 12 | 1,1,1-Trichloroethane | 1.0 | BQL | | 13 | Carbon tetrachloride | 1.0 | BQL | | 14 | Bromodichloromethane | 1.0 | BQL | | 15 | 1,2-Dichloropropane | 1.0 | BQL | | 16 | trans-1,3-Dichloropropene | 1.0 | BQ L | | 17 | Trichloroethene | 1.0 | BQL | | 18 | cis-1,3-Dichloropropene | . 1.0 | BQL | | 19 | 1,1,2-Trichloroethane | 1.0 | BQL | | 20 | Chlorodibromomethane | 1.0 | BQL | | 21 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 22 | Bromoform | 1.0 | BQL | | 23 | Tetrachioroethene | 1.0 | BQL | | 24 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 25 | Chlorobenzene | 1.0 | BQL | | 26 | 1,3-Dichlorobenzene | 1.0 | BQL | | 27 | 1,2-Dichlorobenzene | 1.0 | BQL | | 28 | 1,4-Dichlorobenzene | 1.0 | BQL | | | • | 1.0 | BQL | | mmente | ROL - RELOW GUANTITATION LIMIT | | 7 | Comments **BQL - BELOW QUANTITATION LIMIT** Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 87 of 149 ## Purgeable Aromatics SW-846 Method 8020 Compounds IEA Sample No.: 237130 16 Sample Identification: <u>TP-6C</u> Date Collected: May 9, 1990 Date Analyzed: May 16, 1990 Bg: Averill | | | <u>Soil</u>
<u>Quantitation Limit</u>
<u>uq/Kq</u> | Results
Concentration | |-----------------|---------------------|--|--------------------------| | <u>Number</u> . | Compound | <u> "wyr rsy</u> | <u>uq/Kq</u> | | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 88 of 149 IER Sample Number: 237130 16 Sample Identification: TP-6C Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 23, 1990 | Number | Compound | Soil
Quantitation
Limit
µg/Kg | Results
Concentration
µg/Kg | |--------|----------------------------|--|-----------------------------------| | 1 | Dimethylphthalate | 350 | BQL | | 2 | Diethylphthalate | 350 ⁻ | BQL | | 3 | Di-n-butyl phthalate | 350· | 660 | | 4 | Benzyl butyl phthalate | 350: | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 350 | BQL | | 6 | Di-n-octylphthalate | 350 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 89 of 149 IEA Sample No. 237130 16 Sample Identification TP-6C Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u>soil</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 20 | BQL | | Aroclor 1221 | 20 | BQL | | Aroclor 1232 | 20 | BQL | | Arocior 1242 | 20 | 35 | | Arocior 1248 | 20 | BQL | | Arocior 1254 | 20 | BQL | | Arocior 1260 | 20 | BQL | | Total Aroclor Concentration | 20 | BQL | #### **Comments** #### BQL - BELOW QUANTITATION LIMIT - (a) Target compound concentration adjusted for % moisture. - (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triongle Park, North Carolina HRS Reference #36 Page 90 of 149 IEA Sample No. 237130 17 Sample Identification Street Drain Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u>Soil</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 0.2 | BQL | | Aroclor 1221 | 0.2 | BQL | | Aroclor 1232 | 0.2 | BQL | | Aroclor 1242 | 0.2 | BQL | | Aroclor 1248 | 0.2 | BQL | | Aroclor 1254 | 0.2 | BQL | | Aroclor 1260 | 0.2 | BQL | | Total Aroclor Concentration | 0.2 | BQL | #### Comments **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 91 of 149 IEA Sample No. 237130 7 Sample Identification BF1-4 Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | | <u> </u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 0.2 | BQL | | Aroclor 1221 | 0.2 | BQL | | Aroclor 1232 | 0.2 | BQL | | Aroclor 1242 | 0.2 | BQL | | Aroclor 1248 | 0.2 | BQL | | Aroclor 1254 | 0.2 | BQL | | Aroclor 1260 | 0.2 | BQL | | Total Aroclor Concentration | 0.2 | BQL | **BOL - BELOW QUANTITATION LIMIT** Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 92 of 149 IEA Sample No. <u>237130</u> 8 Sample Identification 1-4 South composite Date Extracted May 17, 1990 Date Analyzed May 18, 1990 By <u>Hedrick</u> | · | <u>SOIL</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 20 | BQL | | Aroclor 1221 | 20 | BQL | | Aroclor 1232 | 20 | BQL | | Aroclor 1242 | 20 | 20 | | Aroclor 1248 | 20 | BQL | | Aroclor 1254 | 20 | BQL | | Aroclor 1260 | 20 | BQL | | Total Aroclor Concentration | 20 | BQL | #### **Comments** #### **BQL - BELOW QUANTITATION LIMIT** (a) Target compound concentration adjusted for % moisture. (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 93 of 149 # APPENDIX D TEST PIT WATER QUALITY DATA HRS Reference #36 Page 94 of 149 # Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ## Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: $\underline{237130}$ $\underline{4}$ Sample Identification: $\underline{TP1-GW}$ Date Analyzed: May 24, 1990 Date Collected: May 9, 1990 By: Hendricks | | | <u>Water</u> | Results | |---------------|--------------------------------|--------------------|---------------| | <u>Number</u> | <u>Compound</u> | Quantitation Limit | Concentration | | _ | | ug/L | <u>иq/L</u> | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Dichlorodifluoromethane | 1.0 | BQL | | 5 | Chloroethane | 1.0 | 8QL | | 6 | Methylene chloride | 1.0 | BQL | | 7 | Trichlorofluoromethane | 1.0 | BQL | | 8 | 1,1-Dichloroethene | 1.0 | BQL | | 9 | 1,1-Dichloroethane | 1.0 | BQL | | 10 | trans-1,2-Dichloroethene | 1.0 | BQ L | | 11 | Chloroform | 1.0 | BQL | | 12 | 1,2-Dichloroethane | 1.0 | BQ L | | 13 | 1,1,1-Trichloroethane | . 1.0 | BQL | | 14 | Carbon tetrachloride | 1.0 | BQL | | 15 | Bromodichloromethane : | 1.0 | BQL | | 16 | 1,2-Dichloropropane | 1.0 | BQL | | 17 | trans-1,3-Dichloropropene | 1.0 | BQL | | 18 | Trichloroethene | 1.0 | BQL | | 19 | cis-1,3-Dichloropropene | 1.0 | BQL | | 20 | 1,1,2-Trichloroethane | 1.0 | BQL | | 21 | Chlorodibromomethane | 1.0 | BQL | | 22 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 23 | Bromoform | 1.0 | BQL | | 24 | Tetrachloroethene | 1.0 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 26 | Chlorobenzene | 1.0 | BQL | | 27 | 1,3-Dichlorobenzene | 1.0 | BQL | | 28 | 1,2-Dichlorobenzene | 1.0 | BQL | | 29 | 1,4-Dichlorobenzene | 1.0 | BQL | | Comments | BQL - BELOW QUANTITATION LIMIT | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 95 of 149 ## Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237130 4 Sample Identification: <u>TP1-GW</u> Date Collected: May 9, 1990 Date Analyzed: May 25, 1990 By: Hendricks | | | <u>Water</u>
Quantitation Limit
µq/L | Results
Concentration | |---------------|---------------------|--|--------------------------| | <u>Number</u> | Compound | <u> </u> | na/L | | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | | Comments | BQL - BELOW QUANTITATION LIMIT | | | |----------|--------------------------------|--|--| | | | | | | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 96 of 149
IEA Sample Number: 237130 4 Sample Identification: TP1-6W Date Collected: May 9, 1990 Date Extracted: May 15, 1990 By: Rich Date Analyzed: May 21, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 20 | BQL | | 2 | Diethylphthalate | 20 | BQL | | 3 | Di-n-butyl phthalate | 20 | BQL | | 4 | Benzyl butyl phthalate | 20 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 20 | 130 | | 6 | Di-n-octylphthalate | 20 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 97 of 149 IEA Sample No. 237130 4 Sample Identification <u>TP1-GW</u> Date Extracted May 16, 1990 Date Analyzed May 17, 1990 Bg Hedrick | | <u>Water</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | ug/L | | Aroclor 1016 | 2.0 | BQL | | Arocior 1221 | 2.0 | BQL | | Aroclor 1232 | 2.0 | BQL | | Aroclor 1242 | 2.0 | 30 | | Aroclor 1248 | 2.0 | BQL | | Aroclor 1254 | 2.0 | BQL | | Aroclor 1260 | 2.0 | BQL | | Total Aroclor Concentration | 2.0 | BQL | #### **Comments** **BQL - BELOW QUANTITATION LIMIT** (a) Quantitation limit elevated due to a smaller amount of sample extracted. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 98 of 149 ## Purgeable Halocarbons EPA Method 601 Compounds Date Analyzed: May 24, 1990 IEA Sample No.: 237130 5 Sample Identification: TP-2GW Date Collected: May 9, 1990 By: Hendricks | Number | <u>Compound</u> | <u>Water</u>
Quantitation Limit | Results Concentration | |-----------|--------------------------------|------------------------------------|-----------------------| | - Italiio | Composina | <u>μq/L</u> | μq/L | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Dichlorodifluoromethane | 1.0 | BQL | | 5 | Chloroethane | 1.0 | BQL | | 6 | Methylene chloride | 1.0 | BQL | | 7 | Trichlorofluoromethane | 1.0 | BQL | | 8 | 1,1-Dichloroethene | 1.0 | BQL | | 9 | 1,1-Dichloroethane | 1.0 | BQL | | 10 | trans-1,2-Dichloroethene | 1.0 | BQL | | 11 | Chloroform | 1.0 | BQL | | 12 | 1,2-Dichloroethane | 1.0 | BQL | | 13 | 1,1,1-Trichloroethane | 1.0 | 19 | | 14 | Carbon tetrachloride | 1.0 | BQL | | 15 | Bromodichloromethane : | 1.0 | BQL | | 16 | 1,2-Dichloropropane | 1.0 | BQL | | 17 | trans-1,3-Dichloropropene | 1.0 | BQL | | 18 | Trichloroethene | 1.0 | 23 | | 19 | cis-1,3-Dichloropropene | 1.0 | BQL | | 20 | 1,1,2-Trichloroethane | 1.0 | BQL | | 21 | Chlorodibromomethane | 1.0 | BQL | | 22 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 23 | Bromoform | 1.0 | BQL | | 24 | Tetrachloroethene | 1.0 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 26 | Chlorobenzene | 1.0 | BQL | | 27 | 1,3-Dichlorobenzene | 1.0 | BQL | | 28 | 1,2-Dichlorobenzene | 1.0 | BQL | | 29 | 1.4-Dichlorobenzene | 1.0 | BQL | | Comments | BQL - BELOW QUANTITATION LIMIT | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 99 of 149 ## Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237130 5 Sample Identification: <u>TP-2GW</u> Date Collected: May 9, 1990 Date Analyzed: May 25, 1990 By: <u>Hendricks</u> | Number | Compound | <u>Water</u>
Quantitation Limit
<u>uq/L</u> | Results Concentration ug/L | |--------|---------------------|---|----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | | Comments | BQL - BELOW QUANTITATION LIMIT | | | |----------|--------------------------------|--|--| | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 100 of 149 IER Sample Number: 237130 5 Sample Identification: TP-26W Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 21, 1990 | Number | Compound | | water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|---|--|----------------------------------| | 1 | Dimethylphthalate | | 20 | BQL | | 2 | Diethylphthalate | • | 20 | BQL | | 3 | Di-n-butyl phthalate | • | 20 | BQL | | 4 | Benzyl butyl phthalate | : | 20 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | | 20 | 230 | | 6 | Di-n-octylphthalate | : | 20 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 101 of 149 Sample Identification TP-2GW Date Extracted May 16, 1990 Date Analyzed May 17, 1990 By <u>Hedrick</u> | | <u>Water</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | ug/L | | Aroclor 1016 | 1.0 | BQL | | Aroclor 1221 | 1.0 | BQL | | Aroclor 1232 | 1.0 | BQL | | Aroclor 1242 | 1.0 | 5.5 | | Aroclor 1248 | 1.0 | BQL | | Aroclor 1254 | 1.0 | BQL | | Aroclor 1260 | 1.0 | BQL | | Total Aroclor Concentration | 1.0 | BQL | Comments **BQL - BELOW QUANTITATION LIMIT** Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 102 of 149 ## Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: <u>237130</u> <u>6</u> Sample Identification: <u>TP-3GW</u> Sample Identification: <u>TP-3GW</u> Date Collected: <u>May 9, 1990</u> By: <u>Hendricks</u> | | | <u>Water</u> | Results | |---------------|--------------------------------|--------------------|---------------| | | _ | Quantitation Limit | Concentration | | <u>Number</u> | . <u>Compound</u> | μq/L_ | μq/L | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Dichlorodifluoromethane | 1.0 | BQL | | 5 | Chloroethane | 1.0 | BQL | | 6 | Methylene chloride | 1.0 | BQL | | 7 | Trichlorofluoromethane | 1.0 | BQL | | 8 | 1,1-Dichloroethene | 1.0 | BQL | | 9 | 1,1-Dichloroethene | 1.0 | 22 | | 10 | trans-1,2-Dichloroethene | 1.0 | 7 | | 11 | Chloroform | 1.0 | BQL | | 12 | 1,2-Dichloroethane | 1.0 | BQL | | 13 | 1,1,1-Trichloroethane | . 1.0 | 8 | | 14 | Carbon tetrachloride | 1.0 | BQL | | 15 | Bromodichloromethane | 1.0 | BQL | | 16 | 1,2-Dichloropropane | 1.0 | BQL | | 17 | trans-1,3-Dichloropropene | 1.0 | BQL | | 18 | Trichloroethene | 1.0 | BQL | | 19 | cis-1,3-Dichloropropene | 1.0 | BQL | | 20 | 1,1,2-Trichloroethane | 1.0 | BQL | | 21 | Chlorodibromomethane | 1.0 | BQL | | 22 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 23 | Bromoform | 1.0 | BQL | | 24 | Tetrachloroethene | 1.0 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL . | | 26 | Chlorobenzene | 1.0 | 8 | | 27 | 1,3-Dichlorobenzene | 1.0 | BQL | | 28 | 1,2-Dichlorobenzene | 1.0 | BQL | | 29 | 1,4-Dichlorobenzene | 1.0 | 23 | | Comments | BQL - BELOW QUANTITATION LIMIT | | 7 | (| Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 103 of 149 ## Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237130 6 Sample Identification: TP-3GW Date Collected: Meu 9, 1990 Dete Analyzed: May 25, 1990 By: Hendricks | Number | <u>Compound</u> | Water Quantitation Limit μα/L | Results Concentration uq/L | |--------|---------------------|-------------------------------|----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | 8 | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | 36 | | 6 | Ethylbenzene ' | 1.0 | 10 | | 7 | Toluene | 1.0 | 48 | | 8 | Total Xylenes | 1.0 | 79 | | Comments | BQL - BELOW QUANTITATION LIMIT | | | |----------|--------------------------------|--|--| | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 104 of 149 IER Sample Number: 237130 6 Sample Identification: TP-36W Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Date Analyzed: May 23, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 20000 | BQL | | 2 | Diethylphthalate | 20000 | 23000 | | 3 | Di-n-butyl phthalate | 20000 | BQL | | 4 | Benzyl butyl phthalate | 20000 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 20000 | 5500000 | | 6 | Di-n-octylphthalate | 20000 | BQL | Rich - (a) Quantitation limit elevated due to sample dilution prior to analysis. - (b) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 105 of 149 IEA Sample No. 237130 6 Sample Identification <u>TP-3GW</u> Date Extracted May 16, 1990 Date Analyzed May 17, 1990 By Hedrick | | Water | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | ug/L | | Aroclor 1016 | 20 | BQL | | Aroclor 1221 | . 20 | BQL | | Aroclor 1232 | . 20 | BQL | | Aroclor 1242 | : 20 | 3000 | | Aroclor 1248 | 20 | BQL | | Aroclor 1254 | , 20 | BQL | | Aroclor 1260 | 20 | BQL | | Total Aroclor Concentration | 20 | BQL | #### Comments #### **BQL - BELOW QUANTITATION
LIMIT** (a) Quantitation limit elevated due to a smaller amount of sample extracted. (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 106 of 149 ## **Purgeable Halocarbons EPA Method 601 Compounds** IEA Sample No.: 237130 Sample Identification: TP-5GW Date Analyzed: May 24, 1990 Date Collected: May 9, 1990 By: Hendricks | | | <u>Water</u> | Results | |-----------|---------------------------------|--------------------|----------------------| | Number | Compound | Quantitation Limit | <u>Concentration</u> | | itainos: | Composito | <u>ng/L</u> | μq/L | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | BQL | | 4 | Dichlorodifluoromethane | 1.0 | BQL | | 5 | Chloroethane | 1.0 | BQL | | 6 | Methylene chloride | 1.0 | BQL | | 7 | Trichlorofluoromethane | 1.0 | BQL | | 8 | 1,1-Dichloroethene | 1.0 | BQL | | 9 | 1,1-Dichloroethane | 1.0 | BQL | | 10 | trans-1,2-Dichloroethene | 1.0 | BQL | | 11 | Chloroform | 1.0 | 1 | | 12 | 1,2-Dichloroethane | 1.0 | BQL | | 13 | 1,1,1-Trichloroethane | 1.0 | BQL | | 14 | Carbon tetrachloride | 1.0 | BQL | | 15 | Bromodichloromethane | 1.0 | BQL | | 16 | 1,2-Dichloroprop ane | 1.0 | BQL | | 17 | trans-1,3-Dichloropropene | 1.0 | BQL | | 18 | Trichloroethene | 1.0 | BQL | | 19 | cis-1,3-Dichloropropene | 1.0 | BQL | | 20 | 1,1,2-Trichloroethane | 1.0 | BQL | | 21 | Chlorodibromomethane | 1.0 | BQL | | 22 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 23 | Bromoform | 1.0 | BQL | | 24 | Tetrachloroethene | 1.0 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 26 | Chlorobenzene | 1.0 | BQL | | 27 | 1,3-Dichlorobenzene | 1.0 | BQL | | 28 | 1,2-Dichlorobenzene | 1.0 | BQL | | 29 | 1.4-Dichlorobenzene | 1.0 | BQL | | omments [| BQL - BELOW QUANTITATION LIMIT | | 7 | | | | | | | | | | | | | | | | | į. | | | | Co Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina Page 107 of 149 HRS Reference #36 ## Purgeable Aromatics EPA Method 602 Compounds IEA Semple No.: 237130 9 Semple Identification: TP-5GW **Date Collected:** May 9, 1990 Date Analyzed: May 25, 1990 By: <u>Hendricks</u> | Compound | Water Quantitation Limit uq/L | Results Concentration uq/L | |---------------------|--|--| | Benzene | 1.0 | BQL | | Chlorobenzene | 1.0 | BQL | | 1,2-Dichlorobenzene | 1.0 | BQL | | 1,3-Dichlorobenzene | 1.0 | BQL | | 1,4-Dichlorobenzene | 1.0 | BQL | | Ethylbenzene | 1.0 | BQL | | Toluene | 1.0 | BQL | | Total Xylenes | 1.0 | BQL | | | Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene | Compound Benzene 1.0 Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,0 1,4-Dichlorobenzene 1.0 Ethylbenzene 1.0 Toluene 1.0 | | Comments | BQL - BELOW QUANTITATION LIMIT | |----------|--------------------------------| | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 108 of 149 # Phthalates EPA Method 606 Compounds IER Sample Number: 237130 9 Sample Identification: TP-56W Date Collected: May 9, 1990 Date Extracted: May 17, 1990 By: Rich Date Analyzed: May 23, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 20 | BQL | | 2 | Diethylphthalate | 20 | BQL | | 3 . | Bi-n-butyl phthalate | 20 · | BQL | | 4 | Benzyl butyl phthalate | 20 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 20 | 150 | | 6 | Di-n-octylphthalate | 20 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 109 of 149 Sample Identification TP-56W Date Extracted May 16, 1990 Date Analyzed May 17, 1990 By <u>Hedrick</u> | | <u>Water</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | ug/L | | Aroclor 1016 | 20 | BQL | | Aroclor 1221 | 20 | BQL | | Arocior 1232 | 20 | BQL | | Aroclor 1242 | 20 | 6.6 | | Aroclor 1248 | 20 | BQL | | Aroclor 1254 | 20 | BQL | | Aroclor 1260 | 20 | BQL | | Total Aroclor Concentration | 20 | BQL | | | | | | Comments | BQL - BELOW QUANTITATION LIMIT | |----------|--------------------------------| | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 110 of 149 # APPENDIX E GROUNDWATER CHEMICAL DATA HRS Reference #36 Page 111 of 149 1901 NORTH HARRISON AVE.T CARY, N.O. 27613 NOH ARA PROJECT NAME PROJECT # MATRIX REQUESTED PARAMETERS 00272.01 TARD SAMPLERS: (SIGNATURE) SAMPLE 12130 AIWH 6/14 350 6/14: 9:30 HN 2A 2450 6/14 11:30 HW 3A 6/13 HW 38 17:00 MN 4A 6/13 19:15 6/13 HW 64 18:00 6/13 HW 9A 17:30 X Note to Set & MU IA 3A, 38 may have fight RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED BY THE DATE TIME' mister & Ward 1900 ELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY TIME PROJECT MANAGER (PLEASE PRINT) 39950 IEA REMARKS FIELD REMARKS pota: pates are off. samples labeled 6/17 were collected 6/17. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 July 2, 1990 Bernie Franks Wehran Envirotech 1 Mill Street/Chace Mill Burlington, VT 05401-1532 JUL' 2 1990 #### Dear Bernie: Transmitted herewith are the results of analyses performed on samples delivered to IEA on June 14, 1990. Please note that the samples numbered 3 and 4 (MW-3A and MW-3B, respectively) separated into distinct oil and water phases. These phases were analyzed separately by EPA Method 601/602 and EPA Method 608 (PCBs). If I may be of any further service, please do not hesitate to contact me. Sincerely, INDUSTRIAL & ENVIRONMENTAL ANALYSTS, INC. Paul S. Warden Staff Scientist PSW/skb Reference: 237-165 Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 113 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ### LAB RESULTS 7/2/90 Wehren Engineering 1 Mill Street, Chace Mill Burlington, VT 05401-1532 IEA # 237165 Date Received: 6/14/90 Date Collected: 6/13/90 Total Samples Received: 7 Reviewed & Approved by Total Parameters Requested: 28 | ttention: Bernie Fran | iks/C. Sprague Reviewed & | Approved by _ | 18War | |-----------------------|---------------------------|---------------|----------------------| | * Sample I.D. | Parameter Studied | Results | Comments | | MW 1A | EPA METHOD 606 COMPOUNDS | - | See attached sheets. | | MW 2A | EPA METHOD 606 COMPOUNDS | - | See attached sheets. | | 5 MW 3A | EPA METHOD 606 COMPOUNDS | - | See attached sheets. | | 4 MW 3B | EPA METHOD 606 COMPOUNDS | - | See attached sheets. | | 5 MW 4A | EPA METHOD 606 COMPOUNDS | - | See attached sheets. | | 6 MW 6A | EPA METHOD 606 COMPOUNDS | - | See attached sheets. | | 7 MW 9A | EPA METHOD 606 COMPOUNDS | - | See attached sheets. | | I MW 1A | GC Methods601/602 | - ' | See attached sheets. | | 2 MW 2A | GC Methods601/602 | - | See attached sheets. | | 3 MW 3A | GC Methods601/602 | - | See attached sheets. | | 4 MW 3B | GC Methods601/602 | - | See attached sheets. | | 5 MW 4A | GC Methods601/602 | - | See attached sheets. | | 6 MW 6A | GC Methods601/602 | - | See attached sheets. | | 7 MW 94 | GC Methods 601/602 | - | See attached sheets. | | MW 1A | PCB in water | - | See attached sheets. | | 2 MW 2A | PCB in water | - | See attached sheets. | | 3 MW 3A | PCB in water | - | See attached sheets. | | 4 MW 3B | PCB in water | - | See attached sheets. | | 5 MW 4A | PCB in water | - | See attached sheets. | | ó MW 6A | PCB in water | - | See attached sheets. | | 7 MW 9A | PCB in water | - | See attached sheets. | | MW 1A | Zinc, total | 0.214 mg/L | | | 2 MW 2A | Zinc, total | 0.032 mg/L | | | 3 MW 3A | Zinc, total | 3.19 mg/L | | | 4 MW 3B | Zinc, total | 5.90 mg/L | | | Comments: | | | | | THREE H (3. | | | | | | | | | | | · | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 114 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ### LAB RESULTS 7/2/90 Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 IEA # 237165 Date Received: 6/14/90 Date Collected: 6/13/90 Total Samples Received: 7 Total Parameters Requested: 28 Attention: Bernie Franks/C. Sprague Reviewed & Approved by _____ | ***** | militari. | 3 | • | | |--------------|-------------|-------------------|---|----------| | ^ <u> </u> # | Sample I.D. | Parameter Studied | Results | Comments | | 5 | MW 4A | Zinc, total | 0.073 mg/L | | | 6 | MW 6A | Zinc, total | 0.065 mg/L | - | | 7 | MW 9A | Zinc, total | <0.005 mg/L | | | | | | | | | Comments: | |
 | | |-----------|--|------|--| | | | | | | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 115 of 149 ### Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: 237165 1 Sample Identification: MW 1A Date Collected: June 13, 1990 Date Analyzed: June 21, 1990 By: Averill | Number | <u>Compound</u> | <u>Water</u>
Quantitation Limit
µq/L | Results Concentration uq/L | |----------|--------------------------------
--|-----------------------------| | | Chloromethene | 1 | BQL | | 2 | Bromomethane | i | BQL | | 3 | Yinul Chloride | i | BQL | | 4 | Dichlorodifluoromethane | i | . BQL | | 5 | Chloroethane | 1 | BQL | | 6 | Methylene chloride | 1 | BQL | | 7 | Trichlorofluoromethane | 1 | BQL | | 8 | 1.1-Dichloroethene | 1 | BQL | | 9 | 1,1-Dichloroethane | 1 | BQL | | 10 | trans-1,2-Dichloroethene | 1 | BQL | | 11 | Chloroform | 1 | BQL | | 12 | 1,2-Dichloroethane | 1 | BQL | | 13 | 1,1,1-Trichloroethane | 1 | BQL | | 14 | Carbon tetrachloride | 1 | BQL | | 15 | Bromodichloromethane | 1 | , BQL | | 16 | 1,2-Dichloropropane | 1 | BQ L | | 17 | trans-1,3-Dichloropropene | 1 | BQL | | 18 | Trichloroethene | 1 | BQL | | 19 | cis-1,3-Dichloropropene | 1 | BQL | | 20 | 1,1,2-Trichloroethane | 1 | : 8Q L | | 21 | Chlorodibromomethane | 1 | BQL | | 22 | 2-Chloroethylvinyl ether | 1 | BQ L | | 23 | Bromoform | , 1 | BQL | | 24 | Tetrachloroethene | 1 | BQL: | | 25 | 1,1,2,2-Tetrachloroethane | 1 | BQL | | 26 | Chlorobenzene | 1 | BQ L | | 27 | 1,3-Dichlorobenzene | 1 ° | BQL | | 28 | 1,2-Dichlorobenzene | 1 | BQL | | 29 | 1,4-Dichlorobenzene | 1 | BQL | | Comments | BQL - BELOW QUANTITATION LIMIT | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 116 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237165 1 Sample Identification: MW 1A Date Collected: June 13, 1990 Date Analyzed: June 21, 1990 By: Averill | <u>Number</u> | <u>Compound</u> | <u>Water</u>
Quantitation Limit
uq/L | Results Concentration uq/L | |---------------|-----------------------|--|----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | . 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | **Comments** | BQL - BELOW QUANTITATION LIMIT | | |--------------------------------|--| | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 117 of 149 # Phthalates EPA Method 606 Compounds IER Sample Number: 237165 Sample Identification: MW 1R Date Collected: June 13, 1990 Date Extracted: June 20, 1990 By: Joquin Date Analyzed: June 26, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 10 | BQL | | 2 | Diethylphthalate | 10 | BQL | | 3 | Bi-n-butyl phthalate | 10 | BQL | | 4 | Benzyl butyl phthalate | 10 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 10 | 33 | | 6 | Di-n-octylphthalate | 10 | BQL | Comments: BQL = Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 118 of 149 Sample Identification MW 1A Date Extracted June 20, 1990 Date Analyzed June 20, 1990 By Hedrick/Travis | | | <u>Water</u> | Results | |-----------------------------|---|--------------|----------------------| | | | Quantitation | Concentration | | <u>Compound</u> | | <u>Limit</u> | μg/L | | Aroclor 1016 | • | 1.0 | BQL | | Aroclor 1221 | | 1.0 | BQL | | Aroclor 1232 | | 1.0 | BQL | | Aroclor 1242 | • | 1.0 | 2.2 | | Aroclor 1248 | | 1.0 | BQL | | Aroclor 1254 | : | 1.0 | BQL | | Aroclor 1260 | | 1.0 | BQL | | Total Aroclor Concentration | • | 1.0 | 2.2 | | Con | ime | nts | |-----|-----|-----| |-----|-----|-----| BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 119 of 149 ### Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: 237165 2 Sample Identification: MW 2A Date Analyzed: June 21, 1990 Date Collected: June 13, 1990 Bg: Averill | Marakaw | Commenced | <u>Water</u>
Quantitation Limit | Results Concentration | |------------------|--|---------------------------------------|-----------------------| | <u>Number</u> | <u>Compound</u> | <u>μq/L</u> | μq/L | | 1 | Chloromethane | 1 | BQL | | 2 | Bromomethane | 1 | BQL | | 3 | Yinyl Chloride | 1 | B QL | | 4 | Dichlorodifluoromethane | 1 | BQL | | 5 | Chloroethane | 1 | BQL | | 6 | Methylene chloride | 1 | BQL | | 7 | Trichlorofluoromethane | 1 | BQL | | 8 | 1,1-Dichloroethene | 1 | BQL | | 9 | 1,1-Dichloroethane | 1 | BQL | | 10 | trans-1,2-Dichloroethene | 1 | BQL | | 11 | Chloroform | 1 | BQL | | 12 | 1,2-Dichloroethane | · ! | BQL | | 13 | 1,1,1-Trichloroethane | 1 | BQL | | 14 | Carbon tetrachloride | <u>!</u> | BQL | | 15 | Bromodichloromethene |] | BQL | | 16 | 1,2-Dichloropropane | 1 | BQL | | 17 | trans-1,3-Dichloropropene | ! | BQL | | 18 | Trichloroethene | 1 | BQL | | 19 | cis-1,3-Dichloropropene | 1 | BQL | | 20 | 1,1,2-Trichloroethane | 1 | BQL | | 21 | Chlorodibromomethane | .] | BQL | | 22 | 2-Chloroethylvinyl ether | 1 | BQL | | 23 | Bromoform | ! | BQL
BQL | | 24 | Tetrachloroethene | ! | BQL | | 25
26 | 1,1,2,2-Tetrachloroethane
Chlorobenzene | ! | BQL | | 26
27 | • | 1
1. | BQL | | 2 <i>7</i>
28 | 1,3-Dichlorobenzene
1,2-Dichlorobenzene | 1 | BQL | | 26
29 | 1,4-Dichlorobenzene | ; | BQL | | 29 | • | · · · · · · · · · · · · · · · · · · · | | | Comments | BQL - BELOW QUANTITATION LIMIT | | | | L | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 120 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237165 2 Sample Identification: MW 2A Date Collected: June 13, 1990 Date Analyzed: June 21, 1990 By: Averill | <u>Number</u> | Compound | Weter
Quantitation Limit
uq/L | Results Concentration uq/L | |---------------|---------------------|-------------------------------------|----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | Comments | BQL - | BELOW QUANTITATION LIMIT | | |-------|--------------------------|--| | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 121 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ### Phthalates EPA Method 606 Compounds 2 IEA Sample Number: 237165 Sample Identification: MW 2R Date Collected: June 13, 1990 Date Extracted: June 20, 1990 By: Joquin Date Analyzed: June 26, 1990 | . Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |----------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 10 | BQL | | 2 | Diethylphthalate | 10 | BQL | | 3 | Di-n-butyl phthalate | 10 | BQL | | 4 | Benzyl butyl phthalate | 10 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 10 | 52 | | 6 . | Di-n-octylphthalate | 10 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 122 of 149 Sample Identification MW 2A Date Extracted June 20, 1990 Date Analyzed June 20, 1990 By <u>Hedrick/Travis</u> | | <u>Water</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | <u>μg/L</u> | | Aroclor 1016 | 1.0 | BQL | | Arocior 1221 | 1.0 | BQL | | Aroclor 1232 | 1.0 | BQL | | Aroclor 1242 | 1.0 | 9.3 | | Aroclor 1248 | 1.0 | BQL | | Aroclor 1254 | 1.0 | BQL | | Aroclor 1260 | 1.0 | BQL | | Total Aroclor Concentration | 1.0 | 9.3 | **Comments** BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 123 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 Purgeable Halocarbons Date Analyzed: June 26, 1990 ### **EPA Method 601 Compounds** IEA Sample No.: <u>237165</u>. <u>3</u> Sample Identification: MW 3A Date Collected: June 13, 1990 By: Averill | | | <u>Water</u> | Results | |---------------|--------------------------------|--------------------|---------------| | | | Quantitation Limit | Concentration | | <u>Number</u> | <u>Compound</u> | μq/L | μq/L | | | Chlamamathana | 1.0 | BQL | | 1 | Chloromethane
Bromomethane | 1.0 | BQL | | 2
3 | Yinyl Chloride | 1.0 | 3 | | 4 | Dichlorodifluoromethane | 1.0 | BQL | | 5 | Chloroethane | 1.0 | 1 | | 6 | Methylene chloride | 1.0 | BQL | | 7 | Trichlorofluoromethene | 1.0 | BQL | | 8 | 1,1-Dichloroethene | 1.0 | BQL | | 9 | 1,1-Dichloroethane | 1.0 | 24 | | 10 | trans-1,2-Dichloroethene | 1.0 | 14 | | 11: | Chloroform | 1.0 | BQL | | 12 | 1,2-Dichloroethane | 1.0 | BQL | | 13 | 1,1,1-Trichloroethane | 1.0 | 6 | | 14: | Carbon tetrachloride | 1.0 | BQL | | 15 | Bromodichloromethane | 1.0 | BQL | | 16 | 1,2-Dichloropropane | 1.0 | BQL | | 17 | trans-1,3-Dichloropropene | 1.0 | BQL | | 18 | Trichloroethene | 1.0 | BQL | | 19 | cis-1,3-Dichloropropene | 1.0 | BQL | | 20 | 1,1,2-Trichloroethane | 1.0 | BQL | | 21 | Chlorodibromomethane | 1.0 | BQL | | 22 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 23 | Bromoform | 1.0 | BQL | | 24 | Tetrachloroethene | 1.0 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 26 | Chlorobenzene | 1.0 | BQL | | 27 | 1,3-Dichlorobenzene | 1.0 | 1. | | 28 | 1,2-Dichlorobenzene | 1.0 | BQL | | 29 | 1,4-Dichlorobenzene | 1.0 | 12 | | Comments | BQL - BELOW QUANTITATION
LIMIT | | | | | Water phase | | | | | 11.0.0. hunan | | | | | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 124 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237165 3 Sample Identification: MW 3A Date Cellected: June 13, 1990 Date Analyzed: June 26, 1990 By: Averill | | | <u>Water</u>
Quantitation Limit
<u>µq/L</u> | Results
Concentration | |---------------|---------------------|---|--------------------------| | <u>Number</u> | Compound | MCC | md/F | | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | 4 | | 5 | 1,4-Dichlorobenzene | 1.0 | 17 | | 6 | Ethylbenzene | 1.0 | 1 | | 7 | Toluene | 1.0 | 11 | | 8 | Total Xylenes | 1.0 | 3 | Comments BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 125 of 149 ### Phthalates EPA Method 606 Compounds IEA Sample Number: 237165 3 Sample Identification: MW 3A Date Collected: June 13, 1990 Date Extracted: June 20, 1990 By: Joquin Date Analyzed: June 26, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 880,000 | BQL | | 2 | Diethylphthalate | 880,000 | BQL | | 3 | Di-n-butyl phthalate | 880,000 | BQL | | 4 | Benzyl butyl phthalate | 880,000 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 880,000 | 110,000,000 | | 6 ` | Di-n-octylphthalate | 880,000 | BQL | ### Comments: BQL = Below Quantitation Limit - (a) Quantitation limit elevated due to sample dilution prior to analysis. - (b) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 126 of 149 Sample Identification MW 3A Date Extracted June 20, 1990 Date Analyzed June 26, 1990 By <u>Travis</u> | | <u>Water</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | μg/L | | Aroclor 1016 | 75,000 | BQL | | Aroclor 1221 | 75,000 | BQL | | Aroclor 1232 | 75,000 | BQL | | Aroclor 1242 | 75,000 | 390,000 | | Aroclor 1248 | 75,000 | BQL | | Aroclor 1254 | 75,000 | BQL | | Aroclor 1260 | 75,000 | 6QL | | Total Aroclor Concentration | 75,000 | 390,000 | ### **Comments** **BQL - BELOW QUANTITATION LIMIT** Water phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 127 of 149 ### Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: <u>237165</u> <u>3</u> Sample Identification: MW 3A Date Analyzed: June 26, 1990 Date Collected: June 13, 1990 By: Averill | | | | Results | |--------|---------------------------|--------------------|---------------| | Number | Company | Quantitation Limit | Concentration | | Number | Compound | μq/L | μq/L | | 1 | Chloromethane | 500 | BQL | | 2 | Bromomethane | 500 | BQL | | 3 | Yinyl Chloride | 500 [°] | BQL | | 4 | Dichlorodifluoromethane | 500 | BQL | | 5 | Chloroethane | 500 | BQL | | 6 | Methylene chloride | 500; | BQL | | 7 | Trichlorofluoromethane | 500 | BQL | | 8 | 1,1-Dichloroethene | 500 | BQL | | 9 | 1,1-Dichloroethane | 500 [:] | 2200 | | 10 | trans-1,2-Dichloroethene | 500 - | 1400 | | 11 | Chloroform | 500 . | BQL | | 12 | 1,2-Dichloroethane | 500 | BQL | | 13 | 1,1,1-Trichloroethane | 500, | 2500 | | 14 | Carbon tetrachloride | 500 | 8QL | | 15 | Bromodichloromethane | 500 | BQL | | 16 | 1,2-Dichloropropane | 500 | BQL | | 17 | trans-1,3-Dichloropropene | 500 | BQL | | 18 | Trichloroethene | 500 | BQL | | 19 | cis-1,3-Dichloropropene | 500 [.] | BQL | | 20 | 1,1,2-Trichloroethane | 500 | BQL | | 21 | Chlorodibromomethane | 500 | BQL | | 22 | 2-Chloroethylvinyl ether | 500 | BQL | | 23 | Bromoform | 500 | BQL | | 24 | Tetrachloroethene | 500 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 500 | BQL | | 26 | Chlorobenzene | 500 | 55 0 | | 27 | 1,3-Dichlorobenzene | 500 | 1500 | | 28 | 1,2-Dichlorobenzene | 500 | BQL | | 29 | 1.4-Dichlorobenzene | 500 | 14,000 | ### Comments **BQL - BELOW QUANTITATION LIMIT** Oil Phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 128 of 149 ### Purgeable Aromatics EPA Method 602 IEA Sample No.: 237165 3 Sample Identification: MW 3A Date Collected: June 13, 1990 13, 1990 By: Averill | :
<u>Number</u> | Compound | Quantitation Limit
μα/L | Results Concentration uq/L | |--------------------|---------------------|----------------------------|----------------------------| | :
. 1 | Benzene | 500 | BQL | | . 2 | Chlorobenzene | 500 | 550 | | 3 | 1,2-Dichlorobenzene | 500 | BQL | | . 4 | 1,3-Dichlorobenzene | 500 | 1500 | | 5 | 1,4-Dichlorobenzene | 500 | 14,000 | | 6 | Ethylbenzene | 500 | BQL | | 7 | Toluene | 500 | BQL | | 8 | Total Xylenes | 500 | BQL | | | | | | ### Comments **BQL - BELOW QUANTITATION LIMIT** Oil Phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to presence of non-target compounds. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 129 of 149 IEA Sample No. $\underline{237165}$ $\underline{3}$ Sample Identification $\underline{MW 3A}$ Date Extracted June 20, 1990 Date Analyzed June 26, 1990 By <u>Travis</u> | | | <u>011</u> | Results | |-----------------------------|---|--------------|---------------| | | | Quantitation | Concentration | | Compound | ٠ | <u>Limit</u> | mg/Kg | | Aroclor 1016 | • | 100 | BQL | | Aroclor 1221 | | 100 | BQL | | Aroclor 1232 | | 100 | BQL | | Aroclor 1242 | • | 100 | 2500 | | Aroclor 1248 | | 100 | BQL | | Aroclor 1254 | : | 100 | BQL | | Aroclor 1260 | • | 100 | BQL | | Total Aroclor Concentration | • | 100 | 2500 | ### **Comments** **BQL - BELOW QUANTITATION LIMIT** Oil phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 130 of 149 # Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: $\underline{237165}$ $\underline{4}$ Sample Identification: $\underline{MW.3B}$ Sample Identification: MW 3B Date Analyzed: June 26, 1990 Date Collected: June 13, 1990 Bg: Averill | | | <u>0i1</u> | Results | |---------------|---------------------------|--------------------|---------------| | Mumban | 0 | Quantitation Limit | Concentration | | <u>Number</u> | <u>Compound</u> | μq/L | μq/L | | 1 | Chloromethane | 500 | 8QL | | 2 | Bromomethane | 500 | BQL | | - 3 | Yinyl Chloride | 500 | BQL | | . 4 | Dichlorodifluoromethane | 500 | BQL | | 5 | Chloroethane | 500 | BQL | | 6 | Methylene chloride | 500 | BQL | | 7 | Trichlorofluoromethane | 500 | BQL | | 8 | 1,1-Dichloroethene | 500 | BQL | | 9 | 1,1-Dichloroethane | 500 | 2100 | | 10 | trans-1,2-Dichloroethene | 500 | 150 0 | | · 11 | Chloroform | 500 | BQL | | · 12 | 1,2-Dichloroethane | 500 | BQL | | - 13 | 1,1,1-Trichloroethane | 500 | 2400 | | 14 | Carbon tetrachloride | 500 | BQL | | . 15 | Bromodichloromethane | 500 | BQL | | 16 | 1,2-Dichloropropane | 500 | BQL | | 17 | trans-1,3-Dichloropropene | 500 | BQL | | 18 | Trichloroethene | 500 | BQL | | . 19 | cis-1,3-Dichloropropene | 500 | BQL | | : 20 | 1,1,2-Trichloroethane | 500 | BQL | | 21 | Chlorodibromomethane | 800 | BQL | | 22 | 2-Chloroethylvinyl ether | 500 | BQL | | 23 | Bromoform | 500 | BQL | | 24 | Tetrachloroethene | 500 | · BQL | | 25 | 1,1,2,2-Tetrachloroethane | 500 | BQL | | 26 | Chlorobenzene | 500 | 570 | | 27 | 1,3-Dichlorobenzene | 500 | 1500 | | 28 | 1,2-Dichlorobenzene | 500 | BQL | | 29 | 1,4-Dichlorobenzene | 500 | 14,000 | ### Comments **BQL - BELOW QUANTITATION LIMIT** - (a) Oil Phase - (b) Quantitation limit elevated due to sample dilution prior to analysis. - (c) Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 131 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: $\underline{237165}$ $\underline{4}$ Sample Identification: \underline{MW} 38 Date Collected: June 13, 1990 Date Analyzed: June 26, 1990 By: Averill | 91 | Communed | <u>Oil</u>
Quentitetion Limit
µq/L | Results Concentration uq/L | |---------------|---------------------|--|----------------------------| | <u>Number</u> | <u>Compound</u> | | TALL | | 1 | Benzene | 500 | BQL | | 2 | Chlorobenzene | 500 | 720 | | 3 | 1,2-Dichlorobenzene | 500 | BQL | | 4 | 1,3-Dichlorobenzene | 500 | 10,000 | | 5 | 1,4-Dichlorobenzene | 500 | 30,000 | | 6 | Ethylbenzene | 500 | 1,800 | | 7 | Toluene | 500 | 8,400 | | 8 | Total Xylenes | 500 | 16,000 | #### Comments **BQL - BELOW QUANTITATION LIMIT** Oil phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 132 of 149 IEA Sample No. $\underline{237165}$
$\underline{4}$ Sample Identification MW 3B Date Extracted June 26, 1990 Date Analyzed June 26, 1990 By <u>Travis</u> | | <u>011</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | mg/Kg | | Aroclor 1016 | 100 | BQL | | Aroclor 1221 | 100 | BQL | | Aroclor 1232 | 100 | BQL | | Aroclor 1242 | 100 | 3100 | | Aroclor 1248 | 100 | BQL | | Aroclor 1254 | 100 | BQL | | Aroclor 1260 | 100 | BQL | | Total Aroclor Concentration | 100 | 3100 | ### **Comments** **BQL - BELOW QUANTITATION LIMIT** Oil phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 133 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 Purgeable Halocarbons Date Analyzed: June 26, 1990 ### **EPA Method 601 Compounds** IEA Sample No.: $\underline{237165}$ $\underline{4}$ Sample Identification: \underline{MW} 3B Date Collected: June 13, 1990 By: Averill | | | Water | Results | |---------------|--------------------------------|---------------------------------------|---------------| | | | Quantitation Limit | Concentration | | <u>Number</u> | Compound | μq/L_ | μq/L_ | | 1 | Chloromethane | 1.0 | BQL | | 2 | Bromomethane | 1.0 | BQL | | 3 | Yinyl Chloride | 1.0 | 3 | | 4 | Dichlorodifluoromethane | 1.0 | BQL | | 5 | Chloroethane | 1.0 | 1 | | 6 | Methylene chloride | 1.0 | BQL | | 7 | Trichlorofluoromethane | 1.0 | BQL | | 8 | 1,1-Dichloroethene | 1.0 | BQL | | 9 | 1,1-Dichloroethane | 1.0 | 24 | | 10 | trans-1,2-Dichloroethene | 1.0 | 15 | | 11 | Chloroform | 1.0 | 1 | | 12 | 1,2-Dichloroethane | 1.0 | BQL | | 13 | 1,1,1-Trichloroethane | 1.0 | 7 | | 14 | Carbon tetrachloride | 1.0 | BQL | | 15 | Bromodichloromethane | 1.0 | BQL | | 16 | 1,2-Dichloropropane | 1.0 | BQL | | 17 | trans-1,3-Dichloropropene | 1.0 | BQL | | 18 | Trichloroethene | 1.0 | BQL | | 19 | cis-1,3-Dichloropropene | 1.0 | BQL | | 20 | 1,1,2-Trichloroethane | 1.0 | BQL | | 21 | Chlorodibromomethane | 1.0 | BQL | | 22 | 2-Chloroethylvinyl ether | 1.0 | BQL | | 23 | Bromoform | 1.0 | BQL | | 24 | Tetrachloroethene | 1.0 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1.0 | BQL | | 26 | Chlorobenzene | 1.0 | BQL | | 27 | 1,3-Dichlorobenzene | 1.0 | 2 | | 28 | 1,2-Dichlorobenzene | 1.0 | BQL | | 29 | 1,4-Dichlorobenzene | 1.0 | 16 | | Comments | BQL - BELOW QUANTITATION LIMIT | · · · · · · · · · · · · · · · · · · · | 7 | | | Water phase | | | | | • | | | | | | | | | | | | , | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 134 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237165 4 Sample Identification: MW 3B Date Collected: June 13, 1990 Date Analyzed: June 26, 1990 By: Averill | Number | Compound | <u>Water</u>
Quantitation Limit
<u>uq/L</u> | Results Concentration uq/L | |--------|---------------------|---|----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.01 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0° | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | 7 | | 5 | 1,4-Dichlorobenzene | 1.0 | 24 | | 6 | Ethylbenzene | 1.0 | 2 | | 7 | Toluene | 1:0 | 13 | | 8 | Total Xylenes | 1.0 | 17 | Comments BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 135 of 149 ### Phthalates EPA Method 606 Compounds IER Sample Number: 237165 4 Sample Identification: MW 3B Date Collected: June 13, 1990 Date Extracted: June 20, 1990 By: Joquin Date Analyzed: June 26, 1990 | Number | Compound | . Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 940,000 | BQL | | 2 | Diethylphthalate | 940,000 | BQL | | 3 | Di-n-butyl phthalate | 940,000 | BQL | | 4 | Benzyl butyl phthalate | 940,000 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 940,000 | 98,000,000 | | 6 | Di-n-octylphthalate | 940,000 | BQL | Comments: BQL = Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 136 of 149 IEA Sample No. $\underline{237165}$ $\underline{4}$ Sample Identification \underline{MW} 3B Date Extracted June 20, 1990 Date Analyzed June 26, 1990 By <u>Travis</u> | | <u>Water</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | <u>μg/L</u> | | Aroclor 1016 | 58,000 | BQL | | Aroclor 1221 | 58,000 | BQL | | Aroclor 1232 | 58,000 | BQL | | Aroclor 1242 | 58,000 | 280,000 | | Aroclor 1248 | 58,000 | BQL | | Aroclor 1254 | 58,000 | BQL | | Aroclor 1260 | 58,000 | BQL | | Total Aroclor Concentration | 58,000 | 280,000 | ### **Comments** **BQL - BELOW QUANTITATION LIMIT** Water phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 137 of 149 ### Purgeable Halocarbons **EPA Method 601 Compounds** IEA Sample No.: 237165 Sample Identification: MW 4A Date Collected: June 13, 1990 Date Analyzed: June 22, 1990 By: Averill | | | | 014- | |----------|--------------------------------|---------------------------|----------------------| | | | <u>Water</u> | Results | | Number | Compound | <u>Quantitation Limit</u> | <u>Concentration</u> | | HUIIDOI | _ <u>compound</u> | <u>μq/L</u> | μg/L | | 1 | Chloromethane | · 1 | BQL | | 2 | Bromomethane | <u>.</u> 1 | BQL | | 3 | Yinyl Chloride | 1 | BQL | | 4 | Dichlorodifluoromethane | 1 | BQL | | 5 | Chloroethane | 1 | BQL | | 6 | Methylene chloride | ↓ 1 | BQL | | 7 | Trichlorofluoromethane | 1 | BQL | | 8 | 1,1-Dichloroethene | 1 | BQL | | 9 | 1,1-Dichloroethane | [:] 1 | BQL | | 10 | trans-1,2-Dichloroethene | · 1 | BQL | | 11 | Chloroform | . 1 | BQL | | 12 | 1,2-Dichloroethane | 1 | BQL | | 13 | 1,1,1-Trichloroethane | , 1 | 4 | | 14 | Carbon tetrachloride | . 1 | BQL | | -15 | Bromodichloromethane | 1 | BQL | | 16 | 1,2-Dichloropropane | . 1 | BQL | | 17 | trans-1,3-Dichloropropene | . 1 | BQL | | 18 | Trichloroethene | 1 | BQL | | 19 | cis-1,3-Dichloropropene | • 1 | BQL | | 20 | 1,1,2-Trichloroethane | 1 | BQ L | | 21 | Chlorodibromomethane | 1 | BQL | | 22 | 2-Chloroethylvinyl ether | 1 | BQL | | 23 | Bromoform | 1 | BQL | | 24 | Tetrachloroethene | 1 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1 | BQL | | 26 | Chlorobenzene | 1 | BQL | | 27 | 1,3-Dichlorobenzene | 1 | BQL | | 28 | 1,2-Dichlorobenzene | 1 | BQL | | 29 | 1,4-Dichlorobenzene | 1 | BQL | | nments [| BQL - BELOW QUANTITATION LIMIT | |] | | | | | 1 | Com Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 138 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237165 5 Sample Identification: MW 4A Date Collected: June 13, 1990 Date Analyzed: June 22, 1990 By: Averill | <u>Number</u> | <u>Compound</u> | <u>Water</u>
<u>Quantitation Limit</u>
<u>µg/L</u> | Results Concentration ug/L | |---------------|---------------------|--|----------------------------| | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | BQL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | | _ | | | |-----|----|--| | LVU | • | | | Con | ш. | | BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 139 of 149 ### Phthalates EPA Method 606 Compounds IEA Sample Number: 237165 5 Sample Identification: MW 4R Date Collected: June 13, 1990 Date Extracted: June 20, 1990 By: Joquin Date Analyzed: June 26, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 10 | BQL | | 2 | Diethylphthalate | 10 | BQL | | 3 | Di-n-butyl phthalate | 10 | BQL | | 4 | Benzyl butyl phthalate | 10 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 10 | 38 | | 6 | Di-n-octylphthalate | 10 | BQL | Comments: BQL = Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 140 of 149 Sample Identification MW 4A Date Extracted June 20, 1990 Date Analyzed June 20, 1990 By Hedrick/Travis | | <u>Water</u> | Results | |-----------------------------|--------------|---------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | ng/r | | Aroclor 1016 | 1.0 | BQL | | Arocler 1221 | 1.0 | BQL | | Aroclor 1232 | 1.0 | BQL | | Aroclor 1242 | 1.0 | 23 | | Aroclor 1248 | 1.0 | BQL | | Aroclor 1254 | 1.0 | BQL | | Aroclor 1260 | 1.0 | BQL | | Total Aroclor Concentration | 1.0 | 23 | Comments BQL - BELOW QUANTITATION LIMIT: Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 141 of 149 P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 ### Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: 237165 6 Sample Identification: MW 6A Date Cellected: June 13, 1990 Date Analyzed: June 22, 1990 By: Averill | | |
₩ater | Results | |---------------|---------------------------|--------------------|----------------------| | Mumber | Comment | Quantitation Limit | <u>Concentration</u> | | <u>Number</u> | <u>Compound</u> | nd/F | μq/L | | 1 | Chloromethane | 1 | BQL | | 2 | Bromomethene | 1 | BQL | | 3 | Yinyl Chloride | 1 | BQL | | 4 | Dichlorodifluoromethane | 1 | BQL | | 5 | Chloroethane | 1 | BQL | | 6 | Methylene chloride | 1 | BQL | | 7 | Trichlorofluoromethane | 1 | BQL | | 8 | 1,1-Dichloroethene | 1 | BQL | | 9 | 1,1-Dichloroethane | 1 | 11 | | 10 | trans-1,2-Dichloroethene | 1 . | 1 | | 11 | Chloroform | 1 | BQL | | 12 | 1,2-Dichloroethane | 1 | BQL | | 13 | 1,1,1-Trichloroethane | 1 | 6 | | 14 | Carbon tetrachloride | 1 | BQL | | 15 | Bromodichloromethane | 1 | BQL | | 16 | 1,2-Dichloropropane | 1 | BQL | | 17 | trans-1,3-Dichloropropene | 1 | BQL | | 18 | Trichloroethene | 1 | 6 | | 19 | cis-1,3-Dichloropropene | 1 | BQL | | 20 | 1,1,2-Trichloroethane | 1 | BQL | | 21 | Chlorodibromomethane | 1 | BQL | | 22 | 2-Chloroethylvinyl ether | 1 | BQL | | 23 | Bromoform | 1 | BQL | | 24 | Tetrachloroethene | 1 | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1 * | BQL | | 26 | Chlorobenzene | 1 | BQL | | 27 | 1,3-Dichlorobenzene | 1 | BQL | | 28 | 1,2-Dichlorobenzene | 1 | BQL | | 29 | 1,4-Dichlorobenzene | 1 | 7 | Comments **BQL - BELOW QUANTITATION LIMIT** Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 142 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237165 6 Sample Identification: MW 6A Date Collected: June 13, 1990 Date Analyzed: June 22, 1990 By: Averill | | | Water Quantitation Limit | Results
Concentration | |---------------|---------------------|--------------------------|--------------------------| | <u>Number</u> | <u>Compound</u> | μq/L_ | ug/L | | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | 7 | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | Comments BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 143 of 149 ### Phtholotes EPA Method 606 Compounds IEA Sample Number: 237165 6 Sample Identification: MW 6R Date Collected: June 13, 1990 Date Extracted: June 20, 1990 By: Joquin Date Analyzed: June 26, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|----------------------------|--|----------------------------------| | 1 | Dimethylphthalate | 100 | BQL | | 2 | Diethylphthalate | 100 | BQL | | 3 | Di-n-butyl phthalate | 100 | BQL | | 4 | Benzyl butyl phthalate | 100 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 100 | 2800 | | 6 | Di-n-octylphthalate | 100 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 144 of 149 Sample Identification MW 6A Date Extracted June 20, 1990 Date Analyzed June 20, 1990 By <u>Hedrick</u> | | <u>Water</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | Compound | <u>Limit</u> | ug/L | | Aroclor 1016 | 10.0 | BQL | | Aroclor 1221 | 10.0 | BQL | | Aroclor 1232 | 10.0 | BQL | | Aroclor 1242 | 10.0 | 160 | | Aroclor 1248 | 10.0 | BQL | | Aroclor 1254 | 10.0 | BQL | | Aroclor 1260 | 10.0 | BQL | | Total Aroclor Concentration | 10.0 | 160 | ### **Comments** **BQL - BELOW QUANTITATION LIMIT** Water phase Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present. Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 145 of 149 # Purgeable Halocarbons EPA Method 601 Compounds IEA Sample No.: $\underline{237165}$ $\underline{7}$ Sample Identification: \underline{MW} 9A Date Analyzed: June 22, 1990 Date Collected: June 13, 1990 By: Averill | | | <u>Water</u> | Results | |------------|--------------------------------|--------------------|----------------------| | Number | Compared | Quantitation Limit | <u>Concentration</u> | | KUMBEI | Compound | μq/L | μq/L | | 1 | Chloromethane | 1 | BQL | | 2 | Bromomethane | . 1 | BQL | | 3 | Yinyl Chloride | 1 | BQL | | 4 | Dichlorodifluoromethane | 1 | BQL | | 5 | Chloroethane | 1 | BQL | | 6 | Methylene chloride | 1 | BQL | | 7 | Trichlorofluoromethane | 1 | BQL | | 8 | 1,1-Dichloroethene | 1 | BQL | | 9 | 1,1-Dichloroethane | 1 | BQL | | 10 | trans-1,2-Dichloroethene | 1 | BQL | | 11 | Chloroform | 1 | BQL | | 12 | 1,2-Dichloroethane | 1 | BQL | | 13 | 1,1,1-Trichloroethane | 1 | BQL | | 14 | Carbon tetrachloride | 1 | BQL | | 15 | Bromodichloromethane | 1 | BQL | | 16 | 1,2-Dichloropropane | 1 | BQL | | 17 | trans-1,3-Dichloropropene | 1 | BQL | | 18 | Trichloroethene | 1 | BQL | | 19 | cis-1,3-Dichloropropene | 1 | BQL | | 20 | 1,1,2-Trichloroethane | 1 | BQL | | 21 | Chlorodibromomethane | 1 | BQL | | 22 | 2-Chloroethylvinyl ether | 1 | BQL | | 23 | Bromoform | 1 | BQL | | 24 | Tetrachloroethene | 1 . | BQL | | 25 | 1,1,2,2-Tetrachloroethane | 1 | BQL | | 26 | Chlorobenzene | 1 | BQL | | 27 | 1,3-Dichlorobenzene | 1 | BQL | | 28 | 1,2-Dichlorobenzene | 1 | BQL | | 29 | 1,4-Dichlorobenzene | 1 | BQL | | Comments [| BQL - BELOW QUANTITATION LIMIT | | 7 | | | • | | | | | | | | | | | | | | L | | | | | | | | | Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 146 of 149 ### Purgeable Aromatics EPA Method 602 Compounds IEA Sample No.: 237165 7 Sample Identification: MW 9A Date Collected: June 13, 1990 Date Analyzed: June 22, 1990 Bg: Averill | | | <u>Water</u>
Quantitation Limit | Results Concentration | |--------|---------------------|------------------------------------|-----------------------| | Number | Compound | <u>μq/L</u> | uq/L | | 1 | Benzene | 1.0 | BQL | | 2 | Chlorobenzene | 1.0 | BQL | | 3 | 1,2-Dichlorobenzene | 1.0 | BQL | | 4 | 1,3-Dichlorobenzene | 1.0 | BQL | | 5 | 1,4-Dichlorobenzene | 1.0 | 6QL | | 6 | Ethylbenzene | 1.0 | BQL | | 7 | Toluene | 1.0 | BQL | | 8 | Total Xylenes | 1.0 | BQL | | | me | | |--|----|--| | | | | | | | | BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 147 of 149 IEA Sample No. 237165 7 Sample Identification MW 9A Date Extracted June 20, 1990 Date Analyzed June 20, 1990 By Hedrick | | <u>Water</u> | Results | |-----------------------------|--------------|----------------------| | | Quantitation | Concentration | | <u>Compound</u> | <u>Limit</u> | <u>ид/L</u> | | Aroclor 1016 | 1.0 | BQL | | Aroclor 1221 | 1.0 | BQL | | Aroclor 1232 | 1.0 | BQL | | Aroclor 1242 | 1.0 | BQL | | Aroclor 1248 | 1.0 | BQL | | Aroclor 1254 | 1.0 | BQL | | Aroclor 1260 | 1.0 | BQL | | Total Aroclor Concentration | 1.0 | BQL | | ~ |
 |
 | ıta | |---|------|------|-----| | | | | | | | | | | BQL - BELOW QUANTITATION LIMIT Water phase Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 148 of 149 ### Phthalates EPA Method 606 Compounds IEA Sample Number: 237165 7 Sample Identification: MW 9R Date Collected: June 13, 1990 Date Extracted: June 20, 1990 By: Joquin Date Analyzed: June 26, 1990 | Number | Compound | Water
Quantitation
Limit
µg/L | Results
Concentration
µg/L | |--------|--------------------------------|--|----------------------------------| | 1 | Dimethylphthalate ¹ | 100 | BQL | | 2 | Diethylphthalate | 100 | BQL | | 3 | Di-n-butyl phthalate | 100 | BQL | | 4 | Benzyl butyl phthalate | 100 | BQL | | 5 | bis(2-Ethylhexyl)phthalate | 100 | 26 | | 6 | Di-n-octylphthalate | 100 | BQL | Comments: BQL - Below Quantitation Limit Offices and laboratories located in: Essex Junction, Vermont Research Triangle Park, North Carolina HRS Reference #36 Page 149 of 149